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Abstract

This paper presents a system for efficiently tracking
a deformable object in 3D. It is based on a model of
the target represented as a set of textured features in 3D
space and a set of shape bases, which encode the non-
rigid modes of deformation. The model is constructed
from a monocular sequence of 2D feature tracks using a
non-rigid factorization algorithm followed by a non-linear
optimization of the model parameters. Once the model is
available, it is used for efficiently tracking the target using
a 3D extension of the Inverse Compositional Algorithm
which uses a projective camera model. In the experiments
we show the performance of the system on synthetic and
real sequences of a human face undergoing different facial
expressions.

1 Introduction

Non-rigid face modelling and tracking are currently
research topics of great interest to the computer vision
and graphics communities for their application to the
construction of advanced computer interfaces and to
achieving realistic human models for animation. In this
paper we present an efficient model-based tracking system
which tracks the rigid and non-rigid motion of a human
face. The model is generated automatically from a sequence
of images and it consists of a set of shape bases, which
encode the principal modes of deformation of the face,
and a set of small textured patches centred around some
feature points on the 3D model. Each patch is tangent to
the 3D volume of the face at a different point. The texture
of the patch is the result of projecting the underlying grey
levels of the face orthogonally onto a small plane. This
set of patches effectively acts as a sparse model of face
appearance. Once the model has been built a new version
of the Inverse Compositional Alignment (ICA) algorithm

— modified to improve its efficiency — is used to track the
face by relating changes in appearance with face motion.

Recent work in non-rigid factorization [5, 3, 17] has
proved that under weak perspective viewing conditions
it is possible to infer the principal modes of deformation
of an object alongside its 3D shape, within a structure
from motion estimation framework.  Crucially, these
new factorization methods work purely from video in an
unconstrained case: a single uncalibrated camera viewing
an arbitrary 3D surface which is moving and articulating.
In this paper we have used an extension of these algorithms
which includes a non-linear minimization step to optimize
the deformable 3D shape and motion [7].

Our model-based tracking procedure is based on the ICA
algorithm, which was devised for minimising image-based
(2D) cost functions that were invertible and closed under
composition (e.g. 2D affine or projective warps) [2]. In
its original formulation it was used for fitting a Flexible
Appearance Model. Recently, a 3D extension has been
proposed for fitting a 3D Morphable Model [14]. One of
the limitations of this approach is the assumption of affine
camera projection, in order to simplify the estimation of the
rigid component of motion. In this paper we present a 3D
extension which computes the rigid and non-rigid motion
components for a projective camera.

The problem of non-rigid face modelling and tracking
has been previously addressed by different authors.
Most approaches to face tracking are based on very
precise models. Blanz and Vetter [19] use hundreds of
scanned faces in order to model the face and two kinds
of deformations: those caused by facial expressions and
those due to morphological differences among humans.
Decarlo and Metaxas [8] use a hand-crafted model and
optical flow data for tracking. Eisert and Girod [9] use
a similar model-based approach. Our approach is most
closely related to the work by Gokturk et. al. [10] however,
it differs from it both in the way the model is built and
in the tracking process. In this paper, we use a non-rigid
factorization approach to generate the 3D deformable
model using a set of 2D feature tracks from an uncalibrated



monocular sequence as input [7]. Gokturk et. al. on the
other hand, used a stereo camera setup to obtain a set of
3D tracks on which PCA is applied to obtain the shape
bases. Finally, their tracking procedure is based on the
Lucas and Kanade alignment algorithm. Instead, we used
a new version of ICA, which has been modified to improve
its efficiency [1]. Brand and Bhotika also used a 3D
morphable model generated using non-rigid factorization to
perform model-based tracking [4]. However their tracking
algorithm is not incremental like the one presented here but
instead estimates the new set of parameters at each frame.

The paper is organized as follows: in section 2 we
describe the non-rigid factorization algorithm used to
generate the 3D deformable model used in the tracking.
Section 3 describes the inverse compositional algorithm
(ICA) while in section 4 we introduce the efficient version
of this algorithm, extended to deal with 3D data and with
a projective camera model. In section 5 we present some
results with synthetic and real sequences and finally we
present some final conclusions and future work.

2 Automatic 3D model building

Tomasi and Kanade’s factorization algorithm for rigid
structure [16] has recently been extended to the case of non-
rigid deformable 3D structure [5, 3, 17]. Here, the 3D shape
of any configuration of the non-rigid object is expressed as
a linear combination of a set of K basis-shapes B; plus a
mean component X in the following way:
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where N are the number of points describing the object
and [; are the configuration weights. If we assume a
scaled orthographic projection model for the camera, the
coordinates of the 2D image points observed at each frame
f are related to the coordinates of the 3D points according
to the following equation:
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where ¢y is the scale parameter, Ry is a 2 x 3 orthonormal
matrix which contains the first and second rows of the
camera rotation matrix and T, contains the first two
components of the camera translation vector, which may
be eliminated by registering image points to the centroid
in each frame. If all NV points can be tracked throughout
an image sequence we may stack all the point tracks from
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frame 1to F into a 2F x N measurement matrix W and we
may write:
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SinceMisa2F x 3(K + 1) matrixand Sisa3(K +1) x N
matrix, the rank of w must be r < 3(K + 1).

The rank constraint on the measurement matrix W can be
easily imposed by truncating the SVD of W to rank 3(K+1).
This will factor W into a motion matrix i and a shape matrix
§. Note that in the non-rigid case the matrix f needs to be
further decomposed into the 3D pose matrices Ry and the
deformation weights [z, since their values are mixed inside
the motion matrix .

A further issue is that the result of the factorization of w
into # and § is not unique since any invertible 3(K + 1) x
3(K + 1) matrix Q can be inserted in the decomposition
leading to the alternative factorization: w = (MQ)(Q—'85).
The problemis to find a transformation matrix Q that renders
the appropriate replicated block structure of the motion
matrix M shown in (2) and that removes the affine ambiguity
upgrading the reconstruction to a metric one. Whereas in
the rigid case the problem of computing the transformation
matrix Q to upgrade the reconstruction to a metric one
can be solved linearly [16], in the non-rigid case imposing
the appropriate repetitive structure to the motion matrix i
results in a non-linear problem. Various methods to recover
the transformation matrix Q have been proposed so far in
the literature [3, 5, 17] but they fail to provide a completely
satisfactory solution.

2.1 Bundle adjustment

Our approach is to obtain an initial solution for the non-
rigid shape and 3D pose and then to perform a non-linear
optimization step by minimizing image reprojection error.

The goal is to estimate the camera matrices R; and the
3D structure parameters X, By, ¢;, ;5 such that the distance
between the measured image points p;; and the estimated
image points p;; is minimized:
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This method, generically termed bundle-adjustment,
provides a Maximum Likelihood estimate provided that
the noise can be modelled with a Gaussian distribution.
The non-linear optimization of the cost function was
achieved using a Levenberg-Marquadt minimization
scheme modified to take advantage of the sparse block
structure of the matrices involved [18].

The initial estimate for the bundle adjustment
minimization could be provided for example by Brand’s
non-rigid factorization algorithm [3].  However, we
have found that an alternative procedure that provides
a satisfactory initial estimate is to compute the motion
associated to the rigid component and to initialize the
configuration weights to small values close to zero. A
prior on the 3D shape has been added to the cost function
to avoid the non-linear optimization leading to a solution
corresponding to a local minimum. Our prior states that the
depth of the points on the object surface will not change
significantly from one frame to the next, adding the term
E;i;}f{v || si=14 — 8% |2 to the cost function. Similar
regularization terms have also been reported in [17, 3].

In the case where the subject is only performing
non-rigid deformations we suggest the use of a stereo
factorization approach to obtain the initial estimate [6].

In the following sections we present our novel model-
based efficient 3D tracker which uses the 3D model
described in this section and is an extension of the
Incremental Compositional Alignment algorithm of Baker
and Matthews which we explain in the next section.

3 Inverse compositional algorithm

In this section we describe the Inverse compositional
tracking algorithm proposed by Baker and Matthews [2].

Let x represent the location of a point in an image and
I[x,t] represent the brightness value of that location in the
image acquired at time ¢t. Let R = {x1,X2,...,Xn}
be a set of IV image points of the object to be tracked
(target region), whose brightness values are known in a
reference image T[x]. These image points together with
their brightness values at the reference image represent the
reference template to be tracked.

Assuming that the brightness constancy assumption
holds, then
T[X] = I[f(x7 “t)7t]vx € RJ (5)

where I[f(x, py), t] is the image acquired at time ¢ rectified

with motion model f(x, p) and motion parameters p = p,.

Tracking the object means recovering the motion
parameter vector of the target region for each image in
the sequence. This can be achieved by minimising the
difference between the template and the rectified pixels of
the target region for every image in the sequence

min Y [1(f(x, p), 1) - T (6)
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This minimisation problem has been traditionally solved
linearly by computing p incrementally while tracking. We
can achieve this by making a Taylor series expansion of
(6) and computing the increment in the motion parameters
between two time instants by Gauss-Newton iterations.
Different solutions to this problem have been proposed in
the literature, depending on which term of (6) the Taylor
expansion is made on and how the motion parameters are
updated [12, 11, 15, 2].

This problem was first solved in the seminal work of
Lucas and Kanade [12]. The computational cost of tracking
with this approach is due mainly to the cost of estimating the
Jacobian of the image grey values w.r.t. the motion model’s
parameters and its pseudoinverse, which are needed to
make the Gauss-Newton iterations. Two efficient tracking
extensions to the Lucas and Kanade algorithm have been
proposed, which overcome this problem, the Factorisation
approach of Hager and Belhumeur [11] and the Inverse
Compositional Algorithm (ICA) of Baker and Matthews [2].
Here we will present the second approach, which is the one
used in our tracker.

The minimisation solved for tracking with ICA is the
following

min | I[f(x, p), t + 0] — Tf(x, )] [

where T[x] and I|x, ] are vectors formed by scanning the
grey levels in T[x] and I[x,¢]. This algorithm rectifies the
reference template, T[f(x, dp)] in order to compensate for
the error produced when rectifiying the current image with
the motion parameters of the previous one, I[f(x, u,),t +
o0t]. Baker and Matthews called this minimization inverse
because it exchanged the role that the template and the
rectified image had in the original work of Lucas and
Kanade.

In order to solve the minimisation in (7) with a Gauss-
Newton procedure, we make a first order Taylor expansion
of the reference template term,

T[f(x,01)] = T[f(x,0)] + Mop = T[x] + Mop, (8)
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is the Jacobian of the grey levels in the reference template
w.r.t. the motion parameters and function f(x, u) is chosen
such that f(x,0) = x.

Introducing (8) into (7) the minimisation can be rewritten
as

ngin || I[f(xal"‘t)7t + (St] - T[X] - M(Sll, ||27
n
which can be solved by least squares
Sp = (MTM)TIME(t + 6t), 9)

where £(t + 0t) = I[f(x,p,),t + dt] — T[x]. Note that
matrix M is constant, since it does not depend on p,. So
(MTM)~M and can be precomputed off-line. This is the key
for the efficiency of this algorithm.

Note also that the Jacobian of pixel x with respect to
the model parameters in the reference template, M, is a
matrix whose values are our a priori knowledge about
the target structure, that is, how the grey value of each
pixel in the reference template changes as the object moves
infinitesimally. It represents the information provided by
each template pixel to the tracking process. When MM is
singular the motion parameters cannot be recovered, this
would be a generalisation of the so called aperture problem
in the estimation of optical flow.

Once ép is known, the last step is to update p,.
Introducing x’ = f(x,du) into (7) we get the equivalent
minimisation

min || 1[f(/ (', 0p), o). -+ 01] = T[] |,

from where we can conclude that f(x',p;,s) =
F(f ' (x',0p), u;). Which means that the update of the
motion parameters is compositional.

The online computation performed by this tracking
procedure is quite small and consists of the warping of
N pixels (a fast operation using conventional software)
the subtraction of IV pixels to compute £(x,t + dt), and
the multiplication of this result by the n x N matrix
(M™M) "M, where n = dim(p).

4 Efficient non-rigid 3D tracking

In this section we will describe how to extend the Inverse
Compositional Alignment Algorithm to compute efficiently

Figure 1: Points in the rigid component of the model with
texture patches attached to them.

the 3D rigid and non-rigid motion of a deformable object
using the model provided by the procedure described in
section 2. In order to improve the robustness of the tracker
we attach a small textured planar patch to each point of the
3D model. These patches (of size p pixels) are tangent to
the 3D volume of the model at each point X;. The texture
of each patch is the result of projecting orthogonally the
texture of the model around the point onto the patch (see
Fig. 1).

4.1 Motion model

Let Q={Xy,---,Xn, } be the set of 3D points in all N
patches, let T[X;], be the grey level of point X;. The 3D
motion of X; can be described by the composition of a rigid,
fT(X’ialJ’r) = RX; + T, and a non-rigid, fn(Xlal‘l‘n) =
X; + Bu,,, motion model,

where Bsx g IS @ matrix storing the basis shapes of X;,
R(a, B,7) a rotation matrix, T(t;,t,,t.) a translation
vector, p, = (@,B,7,ts ty,t.)" the vector of rigid
parameters and p,, = (l1,ls,...,lx)" the vector of
configuration weights.

4.2 Incremental alignment

In order to simplify the equations in this section we will
use vector notation. Let Xsn,x1 = (X{,Xy,...,Xx )"
be the result of stacking in a vector the coordinates of
the IV, 3D points and let f,.(X, u,) and £,(X, u,) be
the vectorial forms of f.(X;,u,) and fn(Xi, p,,). The
reference template, T(X), is a N, x 1 column vector
containing the grey level of all the pixels in all the patches
associated to the IV, points in €.

As described in section 3, tracking using the ICA
algorithm consists of minimising the following cost
function

min ||I[f"'(fn(x7l‘l’nt)7l‘l’7‘t)7t+6t] -

op,,0p,



We will estimate the minimum of (10) in two steps. First
we will minimise the rigid component of motion assuming
op,, = 0, then, minimise the non-rigid component
assuming éup,, = 0. This will provide us with initial
estimates of dp,,, ., and dp,, .., which can be used to
rectify I[x,¢ + &t]. This procedure can be repeated until
op, =~ 0andop, ~0.

4.2.1 Estimation of rigid motion

If we assume dp,, ~ 0, then (10) can be rewritten as
min || T (£(X, o, ) oy, ), + O8] = TIf, (X, op,)]|[-

Now the rigid Jacobian matrix is
M. = OT[f, (X, )]
o =0

and the incremental rigid motion can be written as o, =
(MIM,)"IM,.E(t + &t). Finally, considering that X =
£71(Y,0u,) = 6RTY — 6RT 6T we may write:

£r(Bn (£ (Y, 008,), B0, ), r,) =

ROR' (Y + 6RBp,, ) + Ty —ROROT.

So the new rigid motion parameters are:

Rerot = ReOR'; Typsr = Ty — ReORTOT. (11)

4.2.2 Estimation of non-rigid motion

Assuming now dp,. = 0, then the cost function (10) can be
rewritten as

min ITEr(Fn (X, g, ) 1y, ), + 6] — T[E (X, S2,,)]| 17,

and the ICA algorithm can be immediately used. In this
case the error can be written as:

E(t + 6t) =T[f . (f(X, y,,), 4y,), t + 0] — T[X]
, and the non-rigid Jacobian matrix takes the form
_ OTn(X, )]
ou A

The increment of the configuration weights can then be
computed using the expression:

S, = (MM M,)IM,E(t + 6t)

. Finally, considering that X = ;' (Y,éu,,) = Y —Bépu,,
then,

£ (£, (Y, 0180), pn,) = Y + B, — Sp2y,)-
So, the new configuration weight vector is

(l

él‘l‘nH_gt = MKy, — 6l‘l‘n (12)

4.3 The tracking algorithm

The final algorithm is as follows:

o Offline:

1. Compute M,. and M,,.
2. Compute and store A, = (M, M,) M.
3. Compute and store A,, = (M M,,) 1M, .

e Online:

1. Repeat Until §p,. =~ 0 and dp,, = 0.

1.1. Rectify I[f, (f,(X, p,,, ), pt.,), t + 6t].

12 &=1f,.(f.(X, py,), 1, ), t + 6t] = T[X].
1.3. Compute dp,, = ARE.

1.4. Computedp, = A€E.

1.5. Update u,,, using (12).

1.6. Update p,., using (11).

2' l'l‘nt_'.st = IJ‘TLt'
3. p’ﬁ—)—st = p'rt'

Let n = 6 + K be the number of motion parameters and
N, the number of pixels. Taking into account that usually
N, >> n, the complexity of our algorithm is shown in
tables 1 and 2. The computation time is dominated by the
image warping in step 1.1. In the case of minimising (10)
by Lucas-Kanade the offline part of our algorithm would be
performed on-line. Then the computation of the Jacobians
and its pseudo-inverses would be the bottle neck of the
minimisation.

Step (D) Sep (@ Sep (3) Totd

O(nNp) | O(62N, +6%) | O(K2N, + K3) || O((6% + K2)Ny)

Table 1: Complexity of the offline part of the algorithm in
number of operations

Step (1.1) | Step (1.2) | Step (1.3) | Step (1.4)
O(nNp) O(Np) O(KNp) | O(6Np)
Step (1.5) | Step (1.6) | Step (2) | Step (3) Total
O(K) 0(6) | O(K) [ 0(6) | O(nNy)

Table 2: Complexity of the online part of the algorithm in
number of operations

5 Experiments

We validate our tracking framework with two different
sets of experiments designed to show the performance of
the tracker with synthetic and real sequences of a human
face performing different expressions. Notice that the
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Figure 2: Synthetic experiment results for some frames. Blue dots stand for ground truth projections whereas red dots stand

for actual tracked positions.

approach is valid for generic non-rigid objects given a valid
description of the shape in terms of a linear combination
of basis shapes. Synthetically generated data is used to
compare the output of the tracking algorithm with the
ground truth position of the 2D points.

5.1 Synthetic data

We have generated a sequence using a synthetic face
model originally developed by Parke et. al. [13]. This is
a 3D model which encodes 18 different muscles of the face.
Animating the face model to generate facial expressions
is achieved by actuating on the different facial muscles.
Then, the generated 3D shape is projected and rendered
onto the image plane using a free tool for ray-tracing 2.
The head translates along the z axis while it rotates around
its three canonical axes for the entire 125 frame sequence.
Deformations occur twice between frames 1-50 and frames
100-125 and the non-rigid motion is mainly located in the
mouth and eyebrows region. Key frames of the output
sequence are shown in the first row of Figure (2).

The non-rigid 3D model is directly computed from 194
image point projections of the described synthetic face at
each frame. We apply the non-linear optimization approach
described in Section 2 with a number of basis shapes that
has been fixed to K = 9 by considering a dimensionality
enough to contain 95% of the total energy encoded in the
SVD singular values. The motion associated with the rigid
component was used to initialize the bundle adjustment
minimization, while the configuration weights were
initialized to a small value, and the algorithm converged
smoothly after 16 iterations.

The generated 3D model is directly applied to the

1See http://www.povray.org

efficient non-rigid tracking framework on a sequence
with the same set of face deformations but different rigid
motion (in particular, we emphasize the effect of projective
distortions). Note that here we want to test the performance
of the tracker in the case where the model describes
perfectly the range of facial deformations. An initialization
process is required to align the model with the first frame.
This issue arises because the non-rigid factorization uses an
affine camera model while the efficient tracking assumes a
full projective one. As initial guess for this initialization we
use a rough projection matrix computed from the 3D model
and the ground truth projections in the first frame of the
sequence. We subsequently optimize the initial solution by
carrying out a non-linear optimization essentially similar to
our approach for model generation.

Once the model is aligned in the first frame of the
sequence, our efficient tracking algorithm is applied to the
images. For each one of the 194 points of the model, a
tangent 3D square patch of 0.3 units size is generated. From
each patch we sample 9 points which extend our model up
to 1746 points. These points are projected onto the first
image of the sequence giving us the intensity values for our
reference template.

Figure (2) shows the actual tracked points (red dots)
compared with the ground truth projections (blue dots) for
certain key frames. The RMS of the reprojection error
for each frame of the sequence is computed as well (see
Figure. 3). As expected, the reprojection error for the initial
frame is different from zero. This is due to the alignment
error introduced by the affine model. A peak in the error
occurs roughly at frame 30 as the model opens its mouth
and rotates around the z axis.
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Figure 3: Reprojection error (distance in pixels) vs. frame
number for the sequence.

5.2 Real Data

Our experiments with real data show the performance
of the non-rigid model generation and efficient tracking
algorithms. We generated a reliable 3D non-rigid model
by using a set of 2D points manually tracked from an
uncalibrated real video sequence of a subject performing
different facial expressions and head rotations.  This
3D model is subsequently used to initialize the tracking
algorithm on a different video sequence but with the same
subject. We perform the initial alignment by matching
manually the 3D points and their projections on the image
plane.

Two different sequences are used to show the
performance of our tracker. First we use a 173 frames
sequence where only rigid motion is shown (see Figure 4)
where the motion is restricted to a rotation around y axis.
Figure 4 shows the actual tracked positions for each point
of the model.

A 190 frames sequence showing only face deformations
is used to verify how the points are tracked when the
model deforms. Results for several key frames showing
expressions can be seen in Figure 5. The efficient tracking
can cope with different degrees of rigid motion as shown
in Figure (4). In the second sequence, where only non-
rigid deformations are present, the tracker experiences some
difficulties in following the non-rigid motion as shown in
Figure (5).

6 Conclusions

In this paper we have presented an efficient model-based
3D tracking algorithm. The model is represented as a linear

k

Figure 4: Real experiment results for the rigid motion
tracking. The key frames 1, 59, 129 and 173 shows the
algorithm tracking different head poses. Red dots stand for
the actual tracked positions.

combination of shape bases generated automatically from
a set of 2D correspondences in an uncalibrated monocular
video sequence. Once the model is generated it can
be subsequently used for tracking using our efficient 3D
tracker which is an extension of the Inverse Compositional
Alignment algorithm to the case of a projective camera
model. We have demonstrated the performance of the
model generation and the 3D tracking in synthetic and
real image sequences. Future work includes the automatic
update of the 3D deformable model during tracking to
extend the range of deformations that the 3D model is able
to cope with.
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