
Planar tracking using the GPU for augmented reality and games∗

Luis A. Leiva†, Antonio Sanz‡, Jośe M. Buenaposada§

Universidad Rey Juan Carlos (MADRID, SPAIN)

1 Introduction

Planar tracking on video streams is a subject of interest in the aug-
mented reality, robotics, human computer interaction for games
or computer vision fields. Traditional approaches to tracking are
based on finding correspondences in successive images. This can
be achieved by computing optical flow or by matching a sparse col-
lection of features. The tracking method presented in this paper
belongs to the first group of methods. It is based on minimizing
the sum-of-squared differences (SSD) between a previously stored
image of the target (the template) and the current image of it.

There are two efficient SSD-based planar tracking algo-
rithms [Baker and Matthews 2004]: Hager and Belhumeur’s Jaco-
bian Factorization and Baker and Matthews’ Inverse Compositional
Image alignment (ICIA). Both algorithms can achieve real-time
performance on the CPU with a relatively small size of the template
(100×100 pixels). On the other hand, they can not maintain real-
time performance with larger templates as the precomputed matri-
ces used on tracking do not fit on the CPU cache memory. The aim
of this paper is to show that this kind of algorithms can be acceler-
ated on the GPU even for the case of large templates or using more
iterations and resolution levels on tracking. We have implemented
the ICIA algorithm on the GPU obtaining impressive performance.

2 Method overview

The same ICIA algorithm can be used with translation, rotation-
translation-scale, affine or homography motion models. In our cur-
rent GPU implementation we describe the target motion using four
parameters,µ = (tu, tv, θ, s), corresponding to rotation, transla-
tion and scale applied to the pixel coordinates,x = (u, v)⊤, of
the template. The motion model function is given byf(x, µ) =
(s + 1)R(θ)x + t, wheret = (tu, tv)⊤ andR(θ) is a 2D rotation
matrix.

The algorithm assumes known motion parametersµt for the im-
age captured at time instantt. On time instantt + 1 the algorithm
performs Gauss-Newton iterations on the captured image to esti-
mate the target motion fromµt. The steps for each iteration are: 1)
warp the current imageI(y, t + 1) with motion parameters from
previous iteration,µt,j (j is the iteration index), computing the
rectified imageI(f(x, µt,j), t + 1); 2) compute the error vector
E subtracting the template from the rectified image; 3) compute the
motion parameters increment from last iteration,δµt,j = M

†
E =

(M⊤M)−1
M
⊤
E , whereM is the constant Jacobian matrix that estab-

lish how the template grey levels varies w.r.t. motion parameters;

∗Accepted as a SIGGRAPH 2007 POSTER
†e-mail: la.leiva@alumnos.urjc.es
‡e-mail: antonio.sanz@urjc.es
§e-mail: josemiguel.buenaposada@urjc.es

Figure 1: Tracking algorithm.

4) compute the new motion parameters for next iteration,µt,j+1,
using the relationf(x, µt,j+1) = f(f−1(x, δµt,j), µt,j−1) (see
[Baker and Matthews 2004]).

Steps 1, 2 and 3 of the algorithm have been implemented on the
GPU (see Fig.1) whereas the step 4 has been implemented on the
CPU (note thatδµ is a 4-element vector in this case). In step 1, we
apply the captured image and the template (both of the same size)
to a quad (corresponding corners are defined byf(x, µt,j)), step 2
is implemented on a pixel shader that makes the texture difference
(between the template and the rectified image from step 1). Step
3 consists of the multiplication of a constant matrix (the Jacobian
matrix pseudoinverse) by the error vector. We have implemented
it on a shader that performs element by element texture multipli-
cation. One texture is filled with the Jacobian pseudoinverse rows,
constant all over the process, and the other one is filled with the
computed error vector. Finally, we perform a sum reduction to get
the four real values of the motion update vector,δµt,j .

3 Conclusion

A real-time planar region tracker is very useful in applications like
augmented reality. On the other hand the SSD algorithms, like
the ICIA, are simply not practical on CPU using templates beyond
100x100 pixels. The CPU results on an Intel Centrino 1,86 GHz
is 4 fps for the 256x256 pixels template and less than a 1 fps us-
ing a 512x512 pixels template. On a GPU implementation we get
impressive results (all for 10 iterations per resolution level and 2
resolution levels tracking, like the CPU tests) for a 256x256 pix-
els template: NVIDIA 8800GTS 96 fps, NVIDIA 7800GTX 62
fps, NVIDIA 6800GT 43 fps; and for 512x512 pixels template:
NVIDIA 8800GTS 55 fps, NVIDIA 7800GTX 27 fps and NVIDIA
6800GT 18 fps. Those results are very promising and we plan to
implement on GPU other planar tracking algorithms or even a 3D
morphable model-based tracking algorithm.

References

BAKER, S., AND MATTHEWS, I. 2004. Lucas-kanade 20 years



on: A unifiying framework.International Journal of Computer
Vision (IJCV) 56, 3, 221–255.


