
  

Tracking a planar patch on the GPU Abstract

 Experimental Results  Conclusions

Planar tracking using the GPU for augmented reality and games
Luis Alexis Leiva, Antonio S. Montemayor, José M. Buenaposada

la.leiva@alumnos.urjc.es; {antonio.sanz, josemiguel.buenaposada}@urjc.es

 Introduction

i

Planar tracking on video streams is a subject of interest in augmented reality, 
robotics, human computer interaction for games or computer vision fields. 
Traditional approaches to tracking are based on finding correspondences in 
successive images. This can be achieved by computing optical flow or by matching 
a sparse collection of features. The tracking method presented in our work belongs 
to the first group of methods. It is based on minimizing the sum-of-squared 
differences (SSD) between a previously stored image of the target (the template) 
and the current image of it:

In this paper, we present a work-in-progress towards the efficient implementation of 
planar tracking algorithms on the GPU. The purpose of this work is to locate in 2D, 
or even 3D,  a real planar patch moving in front of the camera by processing a 
video stream on the GPU. The GPU implementation helps to the tracking algorithm 
in getting real-time performance with any practical size of the object image 
template.

http://gavab.escet.urjc.es

There are two efficient SSD-based planar tracking algorithms: Hager and 
Belhumeur's Jacobian Factorization, and Baker and Matthews' Inverse 
Compositional Image alignment (ICIA). Both algorithms can achieve real-time 
performance on the CPU with a relatively small size of the template (max 100×100 
pixels). They can not maintain real-time performance with larger templates as the 
precomputed matrices used on tracking do not fit on the CPU cache memory. 

The aim of this paper is to show that this kind of algorithms can be accelerated on 
the GPU even for the case of large templates or using more iterations and 
resolution levels on tracking. We have implemented the ICIA algorithm on the 
GPU obtaining impressive performance for the Rotation-Translation-Scale (RTS) 
motion model:

                                                             and

1. Image rectification (warping) stage
In this stage the incoming video image is warped, using the 
motion parameters from previous iteration to build the 
rectified image, I(f(x, μt), t+1).

Taking advantage of the higher GPU memory bandwidth, 
the image warping is performed by texturing a quad with the 
incoming video image. The corresponding corners over the 
captured image (texcoords) are defined by f(x, μt). 

3. Motion parameters increment computation

Inverse Compositional Algorithm 
256x256 and 512x512 pixels 
templates, 10 iterations per 
resolution, 2 resolution levels 
(Rotation-Translation-Scale motion 
model).

Input video sequences are in QCIF 
format (320x240 pixels)

2. Error vector computation
On this stage we substract the template from the rectified image to 
compute the error vector: 

A real-time planar region tracker is very useful in applications like augmented 
reality or interactive games using a video camera.

On the other hand the SSD tracking algorithms, like the ICIA, are simply not 
practical on CPU using templates beyond 100x100 pixels.  

The results we got are very promising and we are planning to implement on 
GPU other planar tracking algorithms or even a 3D morphable model-based 
tracking algorithm. 

Input image

Rectified 
Image

Warping (known motion 
parameters)

R G
B

A

Error

Render

x

R
G

B
A

Error texture

Pseudoinverse 
texture

(1 row per channel)

G
B

R

A

Sum reductions

Only one pixel

R
G
B
A

Motion 
parameters 

update
Only one pixel

Rectified image

Template image f(x, μ)

I(f(x, μt), t)

Ir(x) = I(f(x, 0), t0)

μt = min || I(f(x, μt), t) – Ir(x) ||2

0

10

20

30

40

50

60

70

80

90

100

Intel
Centrino
1.86 GHz

NVIDIA
6800 GT

NVIDIA
7800 GTX

NVIDIA
8800 GTS

FP
S 256x256 pixels

512x512 pixels

f

f x,μ = s1 R θ xtutv  μ= s θ tu tv 

The minimisation of the SSD cost function,  
on ICIA algorithm, is done by Gauss-Newton 
iterations. On each iteration we compute the 
motion parameters increment, δµ, using:

δµ = (MT M)-1 MT ε = M* ε

ε = I(f(x, μt), t+1) – Ir(x) 

We have  implemented this step on a fragment shader that makes the 
texture difference (between the template and the rectified image from 
step 1).

• M is the Jacobian of grey levels w.r.t. µ  (constant)

• M* is the pseudoinverse of the Jacobian (constant).

We have implemented this step on a fragment shader that 
performs element by element texture multiplication. One 
texture is filled with the Jacobian pseudoinverse rows, 
constant all over the process, and the other one is filled 
with the computed error vector.

4. ICIA motion parameters update 
On the last step of the algorithm we compute the new motion 
parameters for the next iteration, μt+1, using the compositional 
relation:

f(x, μt+1) = f(f-1(x, δμ), μt) 

In our case we use the RTS motion model and μt+1  is computed on 
the CPU as:

st1=
st1

sδ 1
−1

R θt1 =R θt R
T δθ 

tutv t1=tutv t− st11 Rθt1  tδ u

tδ v


http://www.dia.fi.upm.es/~pcr

Rectified Image

- =
Template Error


