
1

Supplementary material: Multi-task head
pose estimation in-the-wild

Roberto Valle, José M. Buenaposada and Luis Baumela

Abstract—We present the following supplementary material:
• Further details about the MNN architecture.
• Images and videos for qualitative evaluation.

1 MNN ARCHITECTURE

Here, we present our Multi-task Neural Network (MNN) architecture
in detail. It is inspired in similar encoder-decoder architectures such
as U-Net [1], RCN [2] or Hourglass [3].

We show in Figs. 1 and 2 the MNN encoder-decoder with 9 stages,
reducing the spatial extent of the input image from 256×256 to 1×1
pixels. It includes lateral skip connections that link symmetric layers
between the encoder and the decoder, but we do not display them for
the sake of simplicity.

We modify the original U-Net architecture introducing bottleneck
residual blocks [4] instead of their original convolutional layers. The
residual block lets us reduce the number of operations and increase
depth while preserving the gradient back propagation through. Since
the residual modules require that the input and output of each block
have the same dimensions, we include in the decoder additional 1 ×
1 convolutions to reduce the number of feature maps accordingly.
Whenever the spatial resolution is halved we double the number of
feature maps, from 64 and up to 256. We show in Tables 1 and 2
further details about our encoder and decoder respectively. We also
added BatchNormalization and ReLu after each convolutional layer,
but we do not display them for the sake of simplicity.

At the end of the encoder (i.e., bottleneck layer) we hook up
two different losses, LED(pED) and LAE(p

AE) related to the head
pose estimation, adding two 1×1 Conv2D layers with 6 feature maps
(fc_pose and fc_pose_proj). The former directly minimizes the
euclidean error of pose parameters. The latter measures the alignment
error produced by projecting a mean 3D face model using these pose
parameters.

At the end of the decoder we hook up two cross-entropy losses,
LCE(h) and LCE(v), related to the estimation of non-rigid landmark
location and their visibilities by adding two different 1 × 1 Conv2D
layers with one feature map per landmark (fc_lnd and fc_vis).
For the face alignment task, we introduce a softmax activation layer
to provide probability distributions for the location of each landmark.
For the visibility task, we add an AveragePooling layer to estimate
each landmark visibility.

The MNN encoder-decoder has 4, 900, 948 parameters for L=68,
while the model size is 20.3 MB. During testing, we may dispose of
the decoder to build a very efficient head pose estimation module with
only 2, 048, 710 parameters, reducing the model size to 8.5 MB.

2 QUALITATIVE IMAGERY AND VIDEO RESULTS

The problem of estimating the head pose from a single RGB image
acquired in the most challenging in-the-wild conditions is still far from
being completely solved. In this section we discuss some of the worst
estimations of our model. To this end, in Fig. 3 we have selected some
representative error images where the average MAEs (yaw, pitch, roll)
is greater than 5◦. We show errors due to partial occlusions (e.g.,
4th image in Fig. 3a), extreme rotations (e.g., 3rd image in Fig. 3b),
exaggerated facial expressions (e.g., 2nd image in Fig. 3c), presence
of make-up (e.g., 2nd image in Fig. 3d) or illumination (e.g., 5th
image in Fig. 3e). Also, we note that the head pose predictions in the
3rd image in Fig. 3d and 6th image in Fig. 3e are coherent with an

Name Layer Output Connected to
input InputLayer (256, 256, 3)

conv_9_1 Conv2D (1x1) (256, 256, 64) input
conv_9_2 Conv2D (1x1) (256, 256, 64) conv_9_1
conv_9_3 Conv2D (3x3) (256, 256, 64) conv_9_2
conv_9_4 Conv2D (1x1) (256, 256, 64) conv_9_3
add_9_4 Add (256, 256, 64) conv_9_1, conv_9_4
conv_8_1 Conv2D (2x2) (128, 128, 128) conv_9_4
conv_8_2 Conv2D (1x1) (128, 128, 64) conv_8_1
conv_8_3 Conv2D (3x3) (128, 128, 64) conv_8_2
conv_8_4 Conv2D (1x1) (128, 128, 128) conv_8_3
add_8_4 Add (128, 128, 128) conv_8_1, conv_8_4
conv_7_1 Conv2D (2x2) (64, 64, 256) conv_8_4
conv_7_2 Conv2D (1x1) (64, 64, 64) conv_7_1
conv_7_3 Conv2D (3x3) (64, 64, 64) conv_7_2
conv_7_4 Conv2D (1x1) (64, 64, 256) conv_7_3
add_7_4 Add (64, 64, 256) conv_7_1, conv_7_4

... ... ... ...
conv_2_1 Conv2D (2x2) (2, 2, 256) conv_3_4
conv_2_2 Conv2D (1x1) (2, 2, 64) conv_2_1
conv_2_3 Conv2D (3x3) (2, 2, 64) conv_2_2
conv_2_4 Conv2D (1x1) (2, 2, 256) conv_2_3
add_2_4 Add (2, 2, 256) conv_2_1, conv_2_4
pool_1_1 MaxPooling (2x2) (1, 1, 256) conv_2_4
conv_1_2 Conv2D (1x1) (1, 1, 64) conv_1_1
conv_1_3 Conv2D (3x3) (1, 1, 64) conv_1_2
conv_1_4 Conv2D (1x1) (1, 1, 256) conv_1_3
add_1_4 Add (1, 1, 256) pool_1_1, conv_1_4
fc_pose Conv2D (1x1) (1, 1, 6) add_1_4

fc_pose_proj Conv2D (1x1) (1, 1, 6) add_1_4

TABLE 1: MNN encoder architecture.

Name Layer Output Connected to
up_1_5 UpSampling (2x2) (2, 2, 256) add_1_4

concat_2_5 Concatenate (2, 2, 512) add_2_4, up_1_5
conv_2_6 Conv2D (1x1) (2, 2, 256) concat_2_5
conv_2_7 Conv2D (1x1) (2, 2, 64) conv_2_6
conv_2_8 Conv2D (3x3) (2, 2, 64) conv_2_7
conv_2_9 Conv2D (1x1) (2, 2, 256) conv_2_8
add_2_9 Add (2, 2, 256) conv_2_6, conv_2_9
conv_2_10 Conv2DTrans (2x2) (4, 4, 256) add_2_9

... ... ... ...
concat_7_5 Concatenate (64, 64, 512) add_7_4, conv_6_10
conv_7_6 Conv2D (1x1) (64, 64, 256) concat_7_5
conv_7_7 Conv2D (1x1) (64, 64, 64) conv_7_6
conv_7_8 Conv2D (3x3) (64, 64, 64) conv_7_7
conv_7_9 Conv2D (1x1) (64, 64, 256) conv_7_8
add_7_9 Add (64, 64, 256) conv_7_6, conv_7_9
conv_7_10 Conv2DTrans (2x2) (128, 128, 128) add_7_9
concat_8_5 Concatenate (128, 128, 256) add_8_4, conv_7_10
conv_8_6 Conv2D (1x1) (128, 128, 128) concat_8_5
conv_8_7 Conv2D (1x1) (128, 128, 64) conv_8_6
conv_8_8 Conv2D (3x3) (128, 128, 64) conv_8_7
conv_8_9 Conv2D (1x1) (128, 128, 128) conv_8_8
add_8_9 Add (128, 128, 128) conv_8_6, conv_8_9
conv_8_10 Conv2DTrans (2x2) (256, 256, 64) add_8_9
concat_9_5 Concatenate (256, 256, 128) add_9_4, conv_8_10
conv_9_6 Conv2D (1x1) (256, 256, 64) concat_9_5
conv_9_7 Conv2D (1x1) (256, 256, 64) conv_9_6
conv_9_8 Conv2D (3x3) (256, 256, 64) conv_9_7
conv_9_9 Conv2D (1x1) (256, 256, 64) conv_9_8
add_9_9 Add (256, 256, 64) conv_9_6, conv_9_9
fc_lnd Conv2D (1x1) (256, 256, L) add_9_9
fc_vis Conv2D (1x1) (256, 256, L) add_9_9
pool_vis AvgPooling (256x256) (1, 1, L) fc_vis

TABLE 2: MNN decoder architecture.



2

64

25
6

646464

25
6

level 9

+

128 6464 128

12
8

level 8

+

256 6464 256

64

level 7

+

256 6464 256

32

level 6

+

256 6464 256
16

level 5

+
256 6464 256

8

level 4

+
256 6464 256

4

level 3

+
256 6464 256

2

level 2

+
256 6464 256

1

level 1

+
1

6

fc

Fig. 1: MNN encoder diagram. We locate at the end of the encoder the losses that minimize the head pose, LED(pED), and the rigid landmarks
location errors, LAE(p

AE). For each task, we use a fully connected layer with 6 outputs (yaw, pitch, roll, tx, ty , tz).

256 512

level 2

256
2

6464 256
2
+

256 512

level 3

256
4

6464 256
4
+

256 512

level 4

256
8

6464 256
8

+

256 512

level 5

256
16

6464 256
16

+

256 512

level 6

256

32

6464 256

32

+

256 512

level 7

256

64

6464 256

64

+

128 256

level 8

128

12
8

6464 128

12
8

+

64 128

level 9

64

25
6

646464

25
6

+

L

25
6

softmax

Fig. 2: MNN decoder diagram. We locate at the end of the decoder the losses that minimize the landmarks location error, LCE(h), and their
visibility estimation, LCE(v). For the face alignment task, we use a last softmax activation layer to generate heatmaps from the [256×256×L]
layer, where L represents the number of landmarks. For the visibility task, we use a pooling layer with kernel size 256× 256.

incorrect face landmark detection, which denotes that our head pose
estimations are usually linked with the face alignment task.

We also provide qualitative results obtained by processing two
videos mnn.mp4 and mnn+or.mp4 from Biwi [5] and 300VW [6]
data sets respectively. We process each frame individually without
tracking or filtering whatsoever between frames. Here, we use the
model trained using 300W-LP [7] for both videos, where we pre-train
with landmarks and refine for all three tasks (i.e., head pose, face
landmark location and visibility estimation).

In mnn.mp4 (see Fig. 4) we use our encoder-only model to
process a sequence including frontal and profile face orientations. For
this video we obtain 2.23 MAE for yaw, 3.94 MAE for pitch and 2.99
MAE for roll, which represent on average a 3.05 MAE for all three
angles. The performance of our model in this sequence is close to the
average in Biwi, 3.66 (see Table 2 in the paper). Observe that yaw
and pitch angles are typically the most difficult to estimate, perhaps
because both produce the largest appearance changes in the expressive
parts of the face.

In mnn+or.mp4 (see Fig. 1 in the paper) we can appreciate not
only the robustness in the estimation of self-occlusions, but also the
remarkable accuracy and stability achieved in the computation of face
landmark locations.

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention - MICCAI, 2015, pp. 234–241.

[2] S. Honari, J. Yosinski, P. Vincent, and C. J. Pal, “Recombinator networks:
Learning coarse-to-fine feature aggregation,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 5743–5752.

[3] J. Yang, Q. Liu, and K. Zhang, “Stacked hourglass network for robust
facial landmark localisation,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017, pp. 2025–2033.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. European Conference on Computer Vision, 2016, pp.
630–645.

[5] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool, “Random
forests for real time 3D face analysis,” International Journal of Computer
Vision, vol. 101, no. 3, pp. 437–458, 2013.

[6] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos,
and M. Pantic, “The first facial landmark tracking in-the-wild challenge:
Benchmark and results,” in Proc. International Conference on Computer
Vision Workshops, 2015, pp. 1003–1011.

[7] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range:
A 3D total solution,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 41, no. 1, pp. 78–92, 2017.



3

[11.17, -7.48, 16.18]
[0.67, -10.77, 12.62]

[-4.63, -20.21, -17.75]
[-8.86, -7.89, -16.42]

[8.73, 4.91, -17.67]
[13.11, -0.44, -10.59]

[-7.48, -3.85, -16.82]
[-2.21, 2.06, -9.24]

[10.48, 14.73, -0.27]
[-0.63, 6.19, 9.32]

[-2.15, 3.25, -5.52]
[-6.90, 0.60, 14.10]

(a) COFW

[-31.99, -4.89, 0.48]
[-26.29, 9.61, -4.19]

[-42.31, -3.04, -8.32]
[-21.76, 0.86, -14.86]

[-73.73, -28.84, 25.15]
[-48.65, -30.74, 18.76]

[67.69, 2.13, 21.22]
[80.21, -8.37, 5.75]

[2.71, 3.07, 12.46]
[11.12, 13.99, 24.42]

[10.14, -16.72, -83.27]
[2.11, -22.64, -81.79]

(b) AFLW

[-0.67, 6.83, 4.27]
[6.58, -0.83, 1.34]

[6.46, -14.16, -24.24]
[-1.37, -8.79, -21.10]

[6.23, 42.95, 2.72]
[5.06, 32.48, -2.49]

(c) 300W

[13.23, 44.29, -26.65]
[13.76, 28.97, -24.74]

[-16.09, 5.12, -1.66]
[-33.02, 7.67, 5.45]

[-6.67, -11.14, -1.99]
[-19.75, -2.81, 16.87]

(d) WFLW

[18.58, 22.27, 0.78]
[29.39, 18.03, 2.08]

[-32.11, 36.13, -30.79]
[-26.60, 30.18, -19.69]

[52.41, -50.13, 5.14]
[32.73, -37.82, 18.09]

[-48.95, -6.10, 0.39]
[-56.35, -9.25, 7.87]

[-9.50, -14.64, 2.03]
[-29.05, -11.67, 8.41]

[23.29, 3.88, -101.91]
[36.63, 10.42, 4.88]

(e) AFLW2000-3D

Fig. 3: Representative faces with large prediction errors in COFW, AFLW, 300W, WFLW and AFLW2000-3D testing data sets. The co-ordinate
systems and [yaw, pitch, roll] angles below represent ground truth and predicted head pose using blue and green colours. Moreover, green and
red face landmarks show visible and occluded predictions respectively.

Fig. 4: Some processed frames from a Biwi sequence in laboratory conditions (see mnn.mp4). In blue and green we display respectively Biwi
annotations and MNN predictions. Yaw, pitch and roll angles are also shown enclosed in brackets.


