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Abstract A critical problem faced by computer vision
on mobile devices is reducing the computational cost of
algorithms and avoiding visual stalls. In this paper we in-
troduce a procedure for reducing the number of samples
required for fitting a homography to a set of noisy cor-
respondences using a random sampling method. This is
achieved by means of a geometric constraint that detects
invalid minimal sets. In the experiments conducted we
show that this constraint not only reduces the number
of random samples at a negligible computational cost,
but also balances the processor workload over time pre-
venting visual stalls. In extreme situations of very large
outlier proportion and noise level, it reduces in about
one order of magnitude the number of required random
samples.
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1 Introduction

Consumer devices can easily create and manage multi-
media information in digital format and yet the connec-
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tion between the digital and the physical world, e.g. iden-
tifying a character in a film, recognizing a piece of music
or reading the title of a book, is still a difficult task.
These perceptual problems have traditionally been ad-
dressed assuming the availability of a high-performance
computer where a computationally intensive algorithm
performs the recognition. Now there is, nevertheless, an
ongoing shift in the computing paradigm from powerful
decentralized computers connected though a network to-
wards an entirely pervasive computing system where a
myriad of resource-limited inter-communicated comput-
ing devices are spread worldwide, “like pigment in the
wall paint” Castells (1996). Providing perceptual abili-
ties to these small devices is an open challenge for com-
puter science.

Mobile devices such as cameras, media players and
tablets are an ubiquitous part of our daily life, being
the mobile phone the most pervasive digital apparatus.
Nowadays they are equipped with high-quality color dis-
plays, high resolution digital cameras, hardware acceler-
ated 3D graphics as well as GPS and broadband data
connections, enabling it to be applied in a wide spec-
trum of applications. Initially they were used as sensors
for two-dimensional visual codes attached to physical ob-
jects, acting as a key to access object-related information
and functionality Rohs and Gfeller (2004). For certain
types of objects, such as sights, buildings or living be-
ings, the tag-based approach is not adequate. Marker-
less solutions are based on extracting a set of object
discriminant features Lowe (2004) and performing the
recognition on a remote server Pielot et al (2008) or
on the mobile device itself Bruns and Bimber (2009);
Henze et al (2009). A combination of marker-less recog-
nition and pervasive tracking has been used for build-
ing a large-scale museum guide Bruns et al (2007). Aug-
mented reality (AU) is another practical application on
mobile phones. It augments indoor or outdoor scenes
with graphical elements providing new ways of inter-
action and giving information about objects and loca-
tions in the scene. The relative orientation between cam-
era and scene is estimated computing the positions of a
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set of image features Takacs et al (2008) or by learning
and recognizing the perspective orientation of a texture
patch Lee et al (2010).

In this paper we introduce a procedure to acceler-
ate the estimation of homographies and evaluate the
impact of the approach on a mobile device. Homogra-
phies are a simple and precise way to obtain the relative
orientation between the camera and a planar patch in
the scene. They have been extensively used for robot
navigation López-Nicolás et al (2010a,b); Guerrero et al
(2005) as well as tracking and mapping Klein and Mur-
ray (2009) and constructing image panoramas Xiong and
Pulli (2010) on mobile phones or creating augmented re-
ality books Kim et al (2010). Although there are proce-
dures to estimate multiple homographies between a pair
of images all constrained to have the same relative ori-
entation Kirchhof (2008), single Homographies are usu-
ally estimated finding the correspondences of a set of
discriminant features using a Random Sampling Method
(RSM) Hartley and Zisserman (2004); Klein and Murray
(2009); Kim et al (2010). The main drawback for imple-
menting this approach in a resource-limited device, such
as a mobile phone, is the computational cost involved
both in identifying the discriminant image features and
in the RSM procedure itself, which involves the repeti-
tive fitting of a model to a large enough number of sets
of correspondences. The problem of efficiently extract-
ing and classifying image features has been extensively
studied Roblee et al (2011); Wagner et al (2008); Taylor
and Drummond (2009); Taylor et al (2009). In this pa-
per we deal with the second problem, i.e. alleviating the
computational cost of the RSM.

RSMs are a family of techniques used to robustly fit
a model to data in presence of outliers. The most promi-
nent examples of these procedures are Random Sample
And Consensus (Ransac) Fishler and Bolles (1981) and
Least Median of Squares (LMedS) Rousseeuw (1984),
both of which have been extensively used in computer vi-
sion.Ransac often replaces LMedS in vision algorithms
since it has more tuning parameters and, consequently,
it can be better adapted to complex data analysis situ-
ations Meer et al (2000). In this paper we will consider
the Ransac algorithm, although our results are imme-
diately applicable to LMedS. Mlesac Torr and Zisser-
man (2000); Tordoff and Murray (2005) is an improve-
ment of Ransac that replaces the inlier count with a
weighted voting based on an M-estimator. Randomized
Ransac Chum and Matas (2002) improves efficiency
by randomizing the Ransac hypothesis evaluation step.
Prosac Chum and Matas (2005) prioritizes correspon-
dences which are more likely to be inliers in the sampling
step, thereby increasing the probability of finding a good
hypothesis earlier. Mapsac Torr and Davidson (2000)
uses a Bayesian approach to rank the hypothesis, esti-
mating the posterior of the hypothesis given the data.
In the same work, Torr et al. introduce Impsac, which
works with an image pyramid and proceeds in a coarse-

to-fine procedure. They apply Mapsac in the coarsest
level, and propagate the believes in the space of parame-
ters of finer levels using sampling-importance-resampling
and Markov Chain Monte Carlo. The consensus sampling
technique of Cheng and Lai (2009) provides several im-
provements to Ransac: it ranks the quality of the data
samples and gives priority to those ranked higher than
a threshold (similar to Prosac); it uses a preemptive
scheme to evaluates a large set of hypothesis with only
a few data samples; it robustly estimates the standard
deviation of the inliers noise to determine the error scale.
These works introduce improvements which are applica-
ble in fairly general cases. However, none of those im-
provements takes advantage of some specific conditions
that hold in homography estimation. Our contribution
is complementary to all these works.

If we assume that our camera follows a pinhole model,
then only points in front of the camera are visible. This
condition is modeled using the oriented projective geom-
etry framework Laveau and Faugeras (1996). In this pa-
per we extend the use of the orientation restriction in the
estimation of homographies. Using the oriented projec-
tive geometry we derive a circular order-preserving con-
straint. This is not the first time that such a constraint
has been used. A similar constraint was previously used
in Tell and Carlsson (2002). However, it was not used
for homography estimation. Chum Chum et al (2004)
also applies the oriented projective geometry to estab-
lish a constraint on epipolar geometry estimation via
Ransac. In the experiments conducted we show that the
constraint reduces the computational cost of RSMs at al-
most no overhead. Moreover, the geometrically-constrained
algorithm not only achieves the lowest computational
cost, but also the lowest variance and consequently the
best balanced processor workload over time.

The organization of the paper is as follows. In Sec-
tion 2 we recall the general scheme of RSMs for homog-
raphy estimation. Section 3 describes the technique used
for improving the performance of RSMs and introduces
the geometric constraint. In Sections 4 and 5 we present
the implementation of the constraint for OpenCV and
the results of an extensive set of synthetic and real ex-
periments. Finally, in Section 6 we draw conclusions.

2 Random sampling homography estimation

For the estimation of plane homographies, RSMs need a
set of point correspondences C between two images, in
which there may be outliers. In Algorithm 1 we give the
general scheme of Ransac. It iteratively takes random
subsets from the original set C and fits a model (in this
case, a homography) to them. The number of elements in
each subset is the minimum for fitting the model (specif-
ically, four for estimating a homography). This is what
we call a minimal subset, Sh. In the case of Ransac,
the quality of a model is given by the number of inliers.
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Algorithm 1 Ransac scheme for homography estima-
tion.
1: for h = 1 to h = itmax do
2: Take randomly a subset Sh of hypothetical correspon-

dences from the set C.
3: Fit a homography Mh to Sh.
4: Compute the quality uh of model Mh.
5: if uh > u∗ then
6: Store current homography Mh as the best one M∗

h .
7: u∗

← uh.
8: end if
9: end for
10: Return the best model M∗

h .

Here, an inlier is a sample whose distance to the model
is below a given threshold. After it iterations, the model
with largest number of inliers is selected.

Steps 3 and 4 in Algorithm 1 are the most expen-
sive in term of computational requirements, since they
involve a repetitive model fitting process which is costly
computationally. The goal of the geometrical restriction
introduced in Section 3 is avoiding unnecessary execu-
tions of these steps.

Given a proportion p of inliers in the data set, the
probability P of finding at least one correct hypothesis
after it iterations is given by Fishler and Bolles (1981):

P = 1− (1− pm)it,

where m is the size of the minimal subset (m = 4 for es-
timating homographies). Therefore, given a desired con-
fidence level P , the theoretical number of necessary iter-
ations is

itmax =
log(1− P )

log(1− pm)
. (1)

This is an optimistic estimation of the number of itera-
tions, since it does not consider the noise contaminating
inliers’ location. Note that a minimal subset of correct
inliers may not lead to a valid hypothesis (see Fig. 1).
So, the actual number it∗ of random sampling iterations
is always larger than the theoretical value itmax. In Sec-
tion 5.1 we perform synthetic experiments that validate
these hypothesis.

3 Geometric constraint in homography
estimation

A set of points in a plane are visible only when two nec-
essary (but not sufficient) conditions hold:

– Points must be in front of the camera as required by
the oriented projective geometry Laveau and Faugeras
(1996).

– The plane containing the points must face towards
the camera.

Fig. 1 Example of noisy inliers which lead to a wrong hy-
pothesis. �’s are noisy inliers, and ◦’s are outliers. Inliers with
a line pattern lead to a wrong model (continuous line). The
correct model is given by the dashed line.

RSMs spend a large portion of computational re-
sources processing sets Sh of correspondences that do
not verify these properties. Here we introduce a geomet-
ric constraint to check whether a minimal subset Sh is
valid, before actually fitting a model Mh (step 3 in Al-
gorithm 1) and evaluating it (step 4).

Let I0 and I1 be two camera images in which a plane π
is visible. We want to estimate the plane π induced ho-
mography H between these two images. Let P0 ⊂ P

2

be the set of two-dimensional coordinates of visible key-
points in I0, and P1 ⊂ P

2 be the set of two-dimensional
coordinates of visible key-points in I1. C is the set of
tentative correspondences between points in I0 and I1.
A correspondence vi ∈ C is a tuple (p0,p1) which maps
an element of P0 to an element of P1.

Let pi ∈ Pi be a visible point in image Ii. Since it is
visible, we assume it is in front of the camera, i.e., there
exists a positive scale λpi

such that

pi = λpi
Pi, λpi

> 0 (2)

where Pi ∈ R
3 is the location of the projected point pi

in the reference frame of the camera i. We denote the
similarity up to a positive scale with

+
∼:

pi
+
∼ Pi.

In each iteration, we are given a minimal subset Sh =
{va, vb, vc, vd} of four correspondences:

va = (a0,a1), a0 ∈ P0, a1 ∈ P1,

vb = (b0,b1), b0 ∈ P0, b1 ∈ P1,

vc = (c0, c1), c0 ∈ P0, c1 ∈ P1,

vd = (d0,d1), d0 ∈ P0, d1 ∈ P1.

We want to check whether Sh is valid before estimating
its corresponding homography. The plane induced by Sh

must be visible in both images I0 and I1 to be valid, i.e.,
both camera centers must be located at the same side of
the plane:

nT
0 C0 + d0

+
∼ nT

1 C1 + d1,
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(a) (b)

Fig. 2 Geometric constraint that must be satisfied by Sh in
each random sample. (a) Points A,B,C in image I1. (b) Cor-
responding points A′, B′, C′ in image I0. Point C′ must not
be located in the marked region, since A′, B′, C′ must have
the same relative order than A, B, C. If this constraint does
not hold, this set of correspondences should be discarded.

where ni, di and Ci are, respectively, the plane normal,
the plane distance to the origin and the camera center
coordinates in the camera i reference frame. Since Ci =
[0, 0, 0]T , this expression reduces to

d0
+
∼ d1. (3)

By definition, we know that di = −nT
i Ai, with λai

Ai =
ai. Determining the plane normal ni requires three points
(out of the four points provided by Sh). Without loss of
generality, we take the points of the first three correspon-
dences of Sh. Hence,

−di = nT
i Ai,

= ((Bi −Ai)× (Ci −Ai))
TAi,

= (Bi ×Ci)
TAi.

Using (2),

−di = λai
λbi

λci
(bi × ci)

Tai. (4)

Since λai
λbi

λci
> 0,

−di
+
∼ (bi × ci)

Tai.

Substituting this expression in (3) we get the geometric
constraint:

(b0 × c0)
Ta0

+
∼ (b1 × c1)

Ta1. (5)

Expression (5) holds if and only if the relative order of
points a0, b0, c0 and that of points a1, b1, c1 is the
same. Figure 2 depicts it graphically. Every subset of
three correspondences in Sh must verify eq. (5). Other-
wise, Sh should be discarded, since it leads to an invalid
homography.

When estimating homographies, in which four corre-
spondences are given, one might apply (5) over the

1. first three correspondences (va, vb and vc),
2. all four possible sets of three correspondences, or
3. over some of these four possible sets.

This gives three alternatives for assessing the minimal
sets with our constraint. The first two alternatives will
be experimentally evaluated in Section 5. From now on
we will call weak constraint to the first alternative and
strong constraint to the second one. In Algorithm 2 we
improve the standard Ransac procedure including this
test.

Algorithm 2 Improved RANSAC for homography esti-
mation.
1: for h = 1 to h = itmax do
2: Take a subset Sh of hypothetical inliers
3: if Sh passes geometric test in (5) then
4: Fit a homography Mh to the hypothetical inliers Sh.
5: Compute the homography quality uh

6: if uh > u∗ then
7: Store current homography Mh as the best one.
8: u∗

← uh.
9: end if
10: end if
11: end for

The geometric constraint presented above is linear in
the size of C. It requires only 8 multiplications and 11 ad-
ditions (note that ai, bi and ci have their third compo-
nent set to 1). Hence, if a set Sh verifies (5), the com-
putational cost of the improved method (Algorithm 2)
is almost equal to the standard one (Algorithm 1). How-
ever, when the minimal set does not pass the test, neither
the homography fitting nor the validation step have to be
performed. Since these are the most expensive steps in
the algorithm, we get a drastic reduction of the compu-
tational cost in that iteration. In this way, it is possible
to speed up the random sampling procedure virtually for
free. In the next section we validate this experimentally.

4 OpenCV implementation

In this section describe the implementation of the geo-
metric constraints described in the previous section in
OpenCV 2.41.

Robust model estimation algorithms in OpenCV share
a C++ class interface. The implementation of such algo-
rithms belongs to the 3D camera calibration module. The
base class defining the interface is CvModelEstimator2

(see classes hierarchy in Fig. 3).
The class CvModelEstimator2 implements two ro-

bust model estimation techniques: Least Median of Squa-
res (LMedS) (in CvModelEstimator2::runLMeDS) and
Ransac (in CvModelEstimator2::runRANSAC). Any spe-
cialization of the class CvModelEstimator2 must imple-
ment the core routine for model estimation, runKernel,
and the method computeReprojError used in CvModel-

Estimator2::findInliers. The section of code in the

1 http://opencv.willowgarage.com
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CvModelEstimator2

+ runKernel()
+ runLMeDS()
+ runRANSAC()
# computeReprojError()
# findInliers()
# getSubset()
# checkSubset()

CvAffine3DEstimator

+ runKernel()
# checkSubset()

CvFMEstimator

+ runKernel()
+ run7Point()
+ run8Point()
# computeReprojError()

CvHomographyEstimator

+ runKernel()
+ refine()
# computeReprojError()

Fig. 3 OpenCV’s UML class hierarchy for robust estimators.

CvModelEstimator2::runRANSACmethod is shown in List-
ing 1. The implementation follows that in Algorithm 1
except for the number of remaining Ransac iterations
that is updated taking into account the number of inliers
of the last accepted model.

Listing 1 Code in CvModelEstimator2::runRANSAC

1 for ( i t e r = 0 ; i t e r < n i t e r s ; i t e r++ )
{

int i , goodCount , nmodels ;
i f ( count > modelPoints )
{

6 // Get m i n ima l s u b s e c t f o r mod e l e s t i m a t i o n :
// e . g . 4 c o r r e s p o n d e n c e s f o r an homog r a p h y
bool found = getSubset (m1,m2,ms1 ,ms2 , 3 0 0 ) ;
i f ( ! found )
{

11 i f ( i t e r == 0 )
return fa l se ;

break ;
}

}
16

// Core mod e l e s t i m a t i o n a l g o r i t h m : e . g . 4
// c o r r e s p o n d e n c e s h omog r a p h y e s t i m a t i o n .
nmodels = runKernel ( ms1 , ms2 , models ) ;
i f ( nmodels <= 0 )

21 continue ;
for ( i = 0 ; i < nmodels ; i++ )
{

// Chec k f o r number o f i n l i e r s
CvMat model i ;

26 cvGetRows (models ,&model i , i ∗modelSize . height ,
( i +1)∗modelSize . he ight ) ;

goodCount = f i n d I n l i e r s (m1, m2,&model i , err ,
tmask , repro jThresho ld ) ;

31 // I f t h e mod e l h a s more i n l i e r s t h a n t h e
// c u r r e n t b e s t mode l , d e c l a r e i t a s t h e new
// b e s t one .
i f ( goodCount>MAX(maxGoodCount , modelPoints −1))
{

36 std : : swap ( tmask , mask ) ;
cvCopy ( &model i , model ) ;
maxGoodCount = goodCount ;
// Upda t e t h e number o f r em a i n i n g i t e r a t i o n s
// a s a f u n c t i o n o f t h e number o f

41 // i n l i e r s f o u n d s o f a r .
n i t e r s = cvRANSACUpdateNumIters ( conf idence ,

(double ) ( count − goodCount )/ count ,
modelPoints , n i t e r s ) ;

}
46 }

}

At this point we can add our geometrical constraint
to OpenCV’s Ransac homography estimation code. We
have to check if a selected subset satisfies the constraint.
We do so by adding the following code on line 16 in
Listing 1:

i f ( ! i sMin imalSetCons i s tent ( ms1 , ms2 ) )
continue ;

This code checks the geometrical constraint and skips
the homograhy estimation and inliers checking altogether

going to the next Ransac iteration, if the the set does
not satisfy the constraint.

5 Experiments

We have performed six synthetic and three real experi-
ments to asses the influence in the performance of Ransac

of the geometric restrictions presented in Section 3. The
synthetic experiments let us systematically study the
number of fitted homographies depending on the propor-
tion of outliers and noise level. In the real experiments
we analyze the actual gains in processing time per image
achieved on a mobile device implementation.

5.1 Synthetic experiments

In these experiments we analyze the computational cost
of the algorithms, measured in terms of the number of
fitted homographies, i.e. number of Ransac iterations
that satisfy the geometric constraints.

We create the synthetic data as follows. We choose an
inlier proportion p and noise level σ. We then generate
an arbitrary homography. This homography is used to
synthesize a set of inlier correspondences. We also gen-
erate a set of random outliers correspondences. The size
of both sets is adjusted according to proportion p. The
union of the inlier and outlier sets generates the corre-
spondence set C of the experiment. Finally, we perturb
the points in C by adding a random Gaussian value with
mean zero and standard deviation σ pixels. Table 1 sum-
marizes the configurations (p, σ) of the first four experi-
ments performed.

For the experiment we run Ransac 5000 times us-
ing the correspondence set C. Each of these executions
is halted at the iteration in which a good homography
(i.e., a homography that fits to at least 85 percent of
inliers in C) is found. From each execution we record
the required number of fitted homographies using stan-
dard Ransac (Algorithm 1) and the weak and strong-
constrained Ransac (Algorithm 2). We also compute
the number of theoretical iterations with equation (1). In
Fig. 4 we show the cumulative proportion of runs that
complete at or before a given number of fitted homo-
graphies. Looking it another way, the figure represents
the probability of finding a good homography for a given
number of fitted homographies.

In absence of noise (experiment 1), the number of
required fitted homographies in the standard Ransac

matches the theoretical estimate. Since the geometrical
constraints filter out many invalid minimal sets, the ac-
tual number of fitted homographies is smaller than the
theoretical value when the constraints are used.

When noise is present (experiments 2, 3 and 4), the
theoretical estimate provided by (1) is optimistic com-
pared to the standard Ransac algorithm. The higher
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Fig. 4 Probability of finding a good homography for a given number of fitted homographies. Curves show the differences
between the theoretical estimate provided by (1), the standardRansac, the weak constrained and strong constrainedRansac.
The configuration for the experiments is given in Table 1.

Table 1 Configuration of synthetic experiments. Each ex-
periment has a different value of inlier proportion p and Gaus-
sian noise σ.

Inlier prop. Noise level
Exp. 1 p = 0.25 σ = 0
Exp. 2 p = 0.25 σ = 1
Exp. 3 p = 0.6 σ = 1
Exp. 4 p = 0.6 σ = 2

the noise level, the higher the number of iterations re-
quired by the standard Ransac. In this case the geomet-
rical constraints reduce the number of computed homo-
graphies to bring it closer to the theoretical prediction.
This happens to be the case in experiment 3. The higher
the proportion of outliers, the better the results achieved
by the geometrical restrictions. In experiments 1 and 2,

Table 2 Percentage of reduction in the number of computed
homographies provided by the weak and strong constraints.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
Weak constraint 47.48% 47.74% 33.64% 34.27%
Strong constraint 87.66% 88.13% 66.26% 66.80%

since the proportion of outliers is highest, the strong re-
striction achieves the best results. On the other hand,
in experiment 4, since the noise level is the highest, the
theoretical prediction is the most optimistic and the fur-
thest from the reality of the standard Ransac.

In all cases, the geometrical constraints lead to a re-
duction in the number of the fitted homographies re-
quired by the standardRansac. This reduction is about 40%
for the weak constraint and about 75% for the strong
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Fig. 5 Experiment 5. Average number of fitted homogra-
phies required to obtain a good fit at different noise levels.

constraint. Table 2 gives details of the percentage of im-
provement achieved in each experiment. For example,
in experiment 4, the standard Ransac requires 153 ho-
mography estimations to reach a confidence level of 0.95,
while only 50 estimations are needed with the strong con-
straint. This fact is more noticeable when the inlier pro-
portion decreases. Experiment 2, with less noise but a
higher outlier proportion, requires 2342 homography fits
without the constraints (out of the bounds in Fig. 4) and
only 280 with the strong constraint, about one order of
magnitude less fits.

The number of homographies that have to be fitted
to find a good model grows exponentially with noise and
outliers. In synthetic experiments 5 and 6 we analyze this
number for increasing noise level and outlier proportion
respectively. We have run Ransac 5000 times per noise
and outlier value. We stop when a homography with 85
percent of inliers is found and plot the average number
of required fitted homographies for the 5000 runs. As we
can see in Fig. 5, the number of computed homographies
for both the weak and strong-constrained Ransac is al-
ways smaller than for the standard algorithm when noise
increases, although the rate of growth is the same for
all algorithms. Results in Fig. 6 confirm again that the
geometrically constrained algorithms always require the
estimation of less homographies than standard Ransac.
Remarkably, in this case, as the proportion of outliers
increases, the rate of growth in the number of required
fits is smaller for the constrained algorithms.

In summary, the actual number of required Ransac

iterations it∗ is always larger than theoretical number itmax

if the point locations are contaminated with noise. The
geometric constraints introduced in Section 3 reduce the
actual number of homography fits. This reduction is more
prominent the larger the proportion of outliers and noise
level. Lastly, and most importantly, as the proportion of
outliers grows, the rate of growth in this number is no-
tably lower for the geometrically constrained algorithms
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Fig. 6 Experiment 6. Average number of fitted homogra-
phies required obtain a good fit at different percentage of
outliers.

5.2 Real Experiments

In this Section we perform static experiments with real
images (experiments 7 and 8) and dynamic experiments
with a large image sequence (experiment 9). Our goal
here is to analyze the actual gain in processing time when
using the geometric constraints in a resource-limited de-
vice, such as a mobile phone.

In these experiments we use the SURF feature de-
tector and descriptor Bay et al (2008) implemented in
OpenCV. To compute correspondences between detected
features we use the euclidean distance between their 64
element descriptors. We declare a putative correspon-
dence between descriptor di from image I1 and descrip-
tor dj from image I2 if the euclidean distance between
di and dj , d(di,dj), is less than 0.6 × d(di,dk), where
dk is the second nearest descriptor to di from image I2.
Note that finding the nearest neighbors to a given de-
scriptor can be performed very quickly with a kd-tree
data structure.

In the first real experiments, numbers 7 and 8, we
confirm the synthetic results obtained in Section 5.1.
First, we estimate the ground truth homography by us-
ing a large number of standardRansac iterations. Then,
we run Ransac 5000 times halting each of them at the
iteration in which a homography has at least 85 percent
of inliers. Since in these experiments we cannot change
the percentage of inliers nor the noise level, we have used
two images with different characteristics. In experiment 7
we use an image with no clutter in the background (i.e.
large percentage of inliers, see Fig. 7). For experiment 8
we use an image with clutter in the background (i.e. low
percentage of inliers, see Fig. 8). In Figs. 7 and 8 we
show the probability of finding a good homography after
fitting a given number of putative homographies.

In experiment 7, with no clutter in the background,
we have a very low amount of outliers (see Fig. 7). The
proportion of true inliers is 0.82, 64 out of 74 putative
correspondences, which is higher than that in the syn-
thetic experiments (see Table 1). In Fig. 7 (right) we can
see that if we want to find a good homography with prob-
ability 0.9, standard Ransac needs to fit 87 homogra-
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Fig. 7 Experiment 7. Clean background. On the left we show overlayed in yellow the true homography. The 64 inlier (resp
14 outlier) correspondences are displayed in green (resp in red). On the right, we show the percentage of Ransac runs (from
5000) that achieved a good homography (85% of the true inliers).

phies, the weak -constrained Ransac needs to estimate
70 whereas the strong-constrained only requires 52. This
means that the weak constraint estimates 20% less ho-
mographies than standard Ransac and the strong one
41% less. This is an expected result when the number
of inliers is high, since the geometrical constraints are
satisfied by most of the Sh sets. However, we still have
an improvement in the computational cost with respect
to standard Ransac.

In experiment 8 the proportion of inliers is 0.32 (20
out of 61 putative matches). In Fig. 8 (right) we can see
that if we want to find a good homography with proba-
bility 0.9, standard Ransac needs to fit 2363 homogra-
phies, the weak -constrained Ransac needs to estimate
1242 whereas the strong-constrained only requires 431.
In this case, the weak constraint estimates 48% less ho-
mographies than standard Ransac and the strong one
82% less. These real experiments confirm the results ob-
tained with the synthetic ones and prove that the geo-
metrical constraints notably reduce the number of fitted
homographies.

A reduction in the number of estimated homogra-
phies will be useful only if the overall computation time
is reduced, i.e. the constraint computation is cheap. Our
last experiment is based on a real image sequence from a
museum guide application running on a Samsung Galaxy.
The time figures shown only account for the homography
fitting part of the application. We have processed a large
image sequence with different paintings. We compare the
standard FindHomography Ransac routine in OpenCV
with the modified versions of the same routine, described
in Section 4, using the weak and strong constraints. The
experiment has been executed on a 2005 desktop pro-
cessor, an AMD Opteron 254 at 2.8GHz, and on Sam-
sung Galaxy’s ARM Cortex V8 processor at 1GHz. We
provide the results for the desktop processor to put in
context the mobile processor’s performance. We present
results for three sub-sequences: experiment 9.1, with a
proportion of inliers of about 0.5 (see Fig. 9), experi-
ment 9.2 varying between low (0.25) and high (0.75) in-

lier proportion (see Fig. 10) and experiment 9.3 with a
low proportion of inliers, around 0.25, in all images.

Experiment 9.1 is an example of an execution when
the proportion of outliers is low (0.5). In Table 3 we can
see that OpenCV’s implementation, which is a standard
Ransac code, doubles the time of the strong constraint
and, what is more important, the constrained solution
is more regular than OpenCV’s, since we get half its
standard deviation (14.95 ms versus 37.85 ms).

Experiment 9.2 (see Fig. 10) involves a wider range of
situations. Initially a poster is located on one side of the
image, which includes a large portion of cluttered back-
ground (frames 2330 to 2388). Then the camera moves
fast and some images are blurred (frames 2388 to 2406).
After that, the camera moves slowly and close to the
poster (frames 2407 to 2473). Finally, the camera moves
away , showing more background (frames 2474 to 2540).
Each of the sub-sequences has a different proportion of
inliers and shows different behavior of the tested algo-
rithms:

– Frames 2330-2388: Since the background is visible
and the poster is small w.r.t. the image, the propor-
tion of inliers is low, around 0.25. In this case the
strong-constrained algorithm is 4 times faster than
OpenCV’s Ransac (see Table 4). Here the standard
deviation in the computation time of the constrained
algorithm is 5 times lower than OpenCV’s implemen-
tation, which gives an smoother execution. We thus
confirm that, as observed in experiment 7, a reduc-
tion in the number of fitted homographies implies an
equivalent reduction in the computation time.

– Frames 2389-2406: The camera moves towards the
poster and the clutter almost disappears from the
background, giving a proportion of inliers about 0.4.
Some images are blurred making feature detection
difficult and consequently decreasing the inlier pro-
portion to 0.25 (see image 2406 and 2413). When the
proportion of inliers is 0.4 the strong-constrained al-
gorithm is three times faster than OpenCV’sRansac
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Fig. 9 Experiment 9.1. Real sequence experiment. In the first two rows, we show the estimated homography overlayed on the
input images (in green). Features belonging to putative matches are shown in blue. In the third row we show the number of
putative correspondences (matches) per frame. In the fourth row we display the percentage of inliers. Finally, in the last row
we show the execution times for Ransac homography estimation with OpenCV’s FindHomography and the two alternatives
for the geometrical constraint.
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Table 3 Experiment 9.1. Time to fit a homography on an ARM Cortex V8, in milliseconds per frame.

frames algorithm mean (ms) median (ms) std (ms)

150-300
OpenCV 65.94 57.89 37.85

Strong constraint 36.41 31.93 14.95

(see Table 4). The standard deviation is 10 times
lower with the constrained algorithm.

– Frames 2407-2473: The poster is so close to the cam-
era that only a part of it is visible. It has good res-
olution. In this situation the feature detector finds
more feature points and, hence, the number of puta-
tive matches is increased (more than 200). This also
boost the proportion of inliers to 0.75. The execution
times show that the strong-constrained algorithm is
still 1.61 times faster than OpenCV’s Ransac imple-
mentation. Here again the standard deviation is 2.5
times lower (see Table 4).

– Frames 2474-2540: In the last part of the sequence
the poster is far from the camera and the background
clutter is visible. This scene configuration makes the
proportion of inliers fall below 0.25. The geometric-
constrained homography estimation is 4.5 times faster
than OpenCV’s. The standard deviation of the con-
strained method is 5.65 times lower (see Table 4).

In the last sub-sequence, experiment 9.3, we have
a moving camera that performs fast in-plane rotations
(see Fig. 11). The inlier proportion ranges from 0.14 to
0.48 with a mean value of 0.32. In this case the speed-
up for the strong-constrained Ransac over OpenCV’s
FindHomography ranges from 2.11 times (frames 3591 to
3606) to 3.7 times (frames 3521 to 3590) (see Table 5).
This is a difficult but typical example of planar localiza-
tion in which the background is cluttered and the camera
is rotating and moving fast. This kind of camera motion
is difficult for the feature detectors and therefore the pro-
portion of inliers decreases. In such cases the proposed
constraints are a must to cope with the computational
burden introduced by the large amount of outliers.

In this section we have shown that the constrained
Ransac algorithm introduced in this paper consistently
outperforms the standard Ransac implementation in
OpenCV’s FindHomography. We have shown experimen-
tally that the reduction in the number of fitted homogra-
phies has an equivalent reduction in computation time,
proving that the constraints are cheap to compute. More-
over, an important requirement to achieve a constant
frame rate on a resource-limited device is a balanced pro-
cessor workload over time. A varying number of matches
and, most importantly, of outliers, may slow down the
performance of a standard homography estimation algo-
rithm to values above 1 sec per frame on an ARM Cortex
V8 processor. The geometrically-constrained Ransac al-
gorithm introduced in this paper not only achieves the
lowest fitting time, but also the lowest variance and con-
sequently the best balanced processor workload over time.

With the geometrical restriction we give more time to
other vision application tasks. In an ARM Cortex V8 the
average values for our Ransac homography estimation
times vary between 36 and 166 ms per frame with a pro-
portion of inliers between 0.6 and 0.2. On the other hand,
in the same conditions, OpenCV’s FindHomography rou-
tine takes between 65 and 629 ms, on average. In certain
specially adverse situations, the performance of the ge-
ometrically constrained Ransac is about one order of
magnitude faster than OpenCV’s.

6 Conclusions

The main contribution of this work is a geometric con-
straint for faster homography estimation with random
sampling. It filters out minimal sets of correspondences
that will not lead to valid homographies. In extreme sit-
uations with large noise and outlier proportion, the con-
straint is a necessary requirement for achieving real-time
performance on a mobile device.

In the synthetic experiments conducted we have proved
that the usual expression used for estimating the number
of iterations in Ransac (1) is optimistic when noise con-
taminates feature positions. In this case, the geometric
constraint brings the actual number of iterations closer
to the theoretical prediction. If noise is sufficiently low,
the geometrically-constrained Ransac may outperform
the theoretical prediction. As noise and outliers grow,
the geometrically constrained algorithms always require
less iterations. Most importantly, when the proportion
of outliers increases, the rate of growth in the number
of iterations of the geometrically-constrained Ransac is
clearly below that of the standard algorithm.

The real experiments on an ARM Cortex V8 1Ghz
prove that the geometric constraint introduces very little
computational overhead in the algorithm. Consequently,
fitting a homography with a geometrically constrained
Ransac always requires less time than with the stan-
dard algorithm. The variance is also smaller, so it better
balances the processor workload over time. This is a key
feature for avoiding stalls in augmented reality applica-
tions on resource-limited devices.

The code with the improved OpenCV’s FindHomogra-
phy may be downloaded from the aditional material in
the journal and from the web page
http://www.dia.fi.upm.es/~pcr/fast homography.html.
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Fig. 10 Experiment 9.2. Real sequence experiment. In the first three rows, we show the estimated homography overlayed
on the input images (in green). The features belonging to putative matches are shown in blue. In the fourth row we show
the number of putative correspondences (matches) per frame. In the fifth row we display the percentage of inliers. Finally,
in the last two rows we show the execution times for Ransac homography estimation with OpenCV’s FindHomography and
the two alternatives for the geometrical constraint.
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Fig. 11 Experiment 9.3. Real sequence experiment. In the first three rows, we show the estimated homography overlayed
over the input images (in green). The features belonging to putative matches are shown in blue. In the fourth row we show
the number of putative correspondences (matches) per frame. In the fifth row we display the percentage of inliers. Finally, in
the last two rows we show the execution times for Ransac homography estimation with stock OpenCV’s FindHomography
and the two alternatives for the geometrical constraint.
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Table 4 Experiment 9.2. Time to fit a homography on an ARM Cortex V8, in milliseconds per frame.

frames algorithm mean (ms) median (ms) std (ms)

2330-2388
OpenCV 356.16 290.01 226.42

Strong constraint 86.00 79.84 44.68

2389-2406
OpenCV 169.11 110.82 197.86

Strong constraint 57.06 54.43 19.35

2407-2473
OpenCV 56.45 41.70 44.81

Strong constraint 38.10 32.74 17.72

2474-2540
OpenCV 585.14 439.79 469.69

Strong constraint 129.73 111.61 83.33

Table 5 Experiment 9.3. Time to fit a homography on an ARM Cortex V8, in milliseconds per frame.

frames algorithm mean (ms) median (ms) std (ms)

3521-3590
OpenCV 629.41 576.42 321.34

Strong constraint 166.51 140.43 85.70

3591-3606
OpenCV 179.75 149.73 76.10

Strong constraint 84.83 77.48 29.52

3607-3705
OpenCV 441.91 324.06 335.11

Strong constraint 148.19 127.55 105.69

Spanish Ministerio de Ciencia e Innovación under contract
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