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Abstract. The construction of Cyberphysical systems requires provid-
ing intelligent behavior to physical agents at the smallest scale and, there-
fore, the need to develop very efficient and resource-aware algorithms. In
this paper we present an object detection algorithm that may endow an
agent with perceptual object detection capabilities at a small computa-
tional cost. To this end we adapt a recent Multi-class Boosting scheme
to create an efficient detector with the capability of regressing the object
bounding box. In the experiments we prove that the resulting algorithm
shows Average Precision (AP) improvements in a multi-view car detec-
tion problem.
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1 Introduction

The last years have witnessed such evolution in internet technology that almost
everything can now be connected transparently and seamlessly through the In-
ternet of Things (IoT). In parallel, advances in Artificial Intelligence enable the
construction of autonomous agents that perceive and take actions in the real
world. In this context Cyberphysical (CBP) systems emerge as an evolution of
the IoT in which physical objects not only have computing and communication
abilities, but also sensing and operation capacities, enabling them to co-operate
in the construction of distributed and autonomous ecosystems [15, 11].

Perceptual skills, such as for example detecting and recognizing objects of
interest, is a requirement for a CBP agent to interact with the environment.
Powered by the use of deep neural nets, modern object detection algorithms
have achieved remarkable performance [8]. However, these approaches require
advanced computational resources such as Graphical Processing Units (GPUs).
Although there is an ever-increasing number of devices shipping GPUs, it is also
true that such intelligent behavior is required at the smallest scale, such as in
micro-scale mobile robots, that are inherently limited in powering and computa-
tional capabilities [2]. Hence, the necessity of developing very efficient algorithms,
that are aware of the time and energy required for their execution [15].

In this paper we propose a detection algorithm based on Viola and Jones
seminal Boosting scheme [12]. Boosting classifiers have been extensively used
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for building multi-class object detectors [14]. This approach has received much
attention because it is very efficient and achieves very good performance in
various object detection problems [1, 9]. The key for its success is the exploitation
of the feature selection capabilities of Boosting together with efficient image
descriptions such as the Integral Channel Features [3]. The usual framework for
Boosting-based object detection uses binary classification (e.g. AdaBoost). In
this regard, multi-class detection problems are usually solved with K detectors,
one per object view or positive class. Here we propose the use of a single multi-
class Boosting algorithm.

A key methodological advance in object detection is the bounding box re-
finement. When dealing with objects that can present different aspect ratios
depending on their pose or configuration, the bounding box refinement step is
crucial to get better precision. Recent CNN-based detectors already perform
bounding box parameters regression, e.g. [10].

In this paper we improve the Boosting-based object detection paradigm [12]
in two ways. First using BAdaCost [4], a recent multi-class cost-sensitive Boost-
ing algorithm. With it we get a precise control over class boundaries (e.g. errors
between positive classes). Hence improving the performance compared to ap-
proaches based on plain binary classifiers, e.g. [7]. Second, we extend BAdaCost
so it is able to regress the detected target bounding box. We present our ap-
proach in a car detection problem and evaluate it with the KITTI benchmark.
In the experiments we show that our approach results in an improvement in AP
from previous baseline results.

2 Multi-class boosting algorithm

A Boosting algorithm is a supervised learning scheme that requires N training
data instances {(xi, li)}

N

i=1, where xi ∈ X encodes the object to be classified
with class label li ∈ L = {1, 2, . . . ,K}. Each label l ∈ L has a corresponding
margin vector yl ∈ Y where Y = {y1, . . . ,yK} [4]. yl has a value 1 in the l-th
coordinate and −1

K−1 elsewhere. So, if l = 1, the margin vector representing class

1 is y1 =
(

1, −1
K−1 , . . . ,

−1
K−1

)⊤

. Hence, it is immediate to see the equivalence

between classifiers G defined over L and classifiers g defined over Y , G(x) = l ∈
L ⇔ g(x) = yl ∈ Y .

2.1 BAdaCost: Cost-sensitive Multi-class Boosting classification

Cost-sensitive classification endows the traditional Boosting scheme with the
capability to to modify pair-wise class boundaries. In this way, we can reduce
the number of errors between positive classes (e.g. different target orientations)
and improve recall when object classes have different aspect ratios. To this end
we use BAdaCost [4] (Boosting Adapted for Cost matrix), a recently introduced
multi-class cost-sensitive Boosting classifier. In this section we briefly introduce
it.
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The costs are encoded in a K ×K-matrix C, where each entry C(i, j) rep-
resents the cost of miss-classifying an instance with real label i as j. Here it is
assumed that C(i, i) = 0, ∀i ∈ L, i.e. the cost of correct classifications is zero.

Let C∗ be a K ×K-matrix defined in the following way

C∗(i, j) =

{
C(i, j) if i 6= j

−
∑K

h=1 C(j, h) if i = j
, ∀i, j ∈ L. (1)

In a cost-sensitive classification problem each value C∗(j, j) represents a “re-
ward” associated to a correct classification. The j-th row in C∗, denoted as
C(j,−), is a margin vector that encodes the costs associated to the j-th label.
The multi-class cost-sensitive margin associated to instance (x, l) is given by
zC := C∗(l,−) · g(x). It is easy to verify that if g(x) = yi ∈ Y , for a certain
i ∈ L, then C∗(l,−) · g(x) = K

K−1C
∗(l, i). Hence, using this generalized mar-

gin, BAdaCost defines a Cost-sensitive Multi-Class Exponential Loss Function

(CMELF ):

LC(l,g(x)) := exp(zC) = exp (C∗(l,−) · g(x)) = exp

(
K

K − 1
C∗(l, G(x))

)

.

(2)
The margin, zC , yields negative values when the classification is correct under
the cost-sensitive point of view, and positive values for costly (wrong) outcomes.
The CMELF is a generalization of the Multi-class Exponential Loss introduced
in [17].

BAdaCost resorts to the CMELF (2) for evaluating classifications encoded
with margin vectors. The expected loss is minimized using a stage-wise addi-
tive gradient descent approach. The strong classier that arises has the following
structure:

H(x) = argmin
k

(

C∗(k,−) ·

M∑

m=1

βmgm(x)

)

= argmin
k

(C∗(k,−) · f(x)) , (3)

where f (x) is a linear combination ofM cost-sensitive weak learners, {gm(x)}Mm=1,
that the algorithm learns incrementally. In this case f(x) is a vector with the
estimated per-class costs from the feature vector x.

2.2 Object detection score for BAdaCost

When building an object detector it is necessary to have a confidence measure
or detection score. In BAdaCost the predicted costs incurred when classifying
sample x in one of the K classes are given by the vector:

c = C∗ · f(x) = (c1, . . . , cK)⊤. (4)

From now on, in multi-class detection problems, we assume that the back-
ground (negative) class has label l = 1 and the object classes (e.g. different views
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of a car) have label l > 1. Therefore, we can compute the score of x as

s(x) = (c1 −min(c2, . . . , cK)). (5)

This score has desirable properties for detection problems: 1) s(x) > 0 when
the winner class (i.e. the class with lowest cost) has label l > 1; 2) s(x) < 0 when
the winner class is l = 1. Given that score definition, we can use any cascade
calibration algorithm for Boosting, for example [16], and stop execution of weak
learners whenever the score falls below a calibrated threshold.

3 Bounding Box Aspect ratio estimation

In our experiments we build a multi-view car detector. One of the challenges in
the car detection problem is that the bounding box aspect ratio (AR) changes
with the view (i.e. frontal cars have lower AR than side view ones). By posing a
classification problem where the labels are the 20 car views (plus no-car label),
we can also compute information related to the AR in the Boosted tree leaves.
The overall approach to simultaneous detection and AR estimation is shown in
Fig. 1.

Fig. 1: Algorithmic pipeline. BAdaCost learns an ensemble of multi-class cost-
sensitive trees. The estimation of AR distribution is computed using all the trees
starting with the tp one. The final AR is the one of the the minimal cost class.

The classifier learns m weak-learners that are cost-sensitive decision trees.
The split measure used in each tree node is the Gini impurity. The modifications
of the tree to make it cost-sensitive are two-fold:
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1. On each split node S the probability of class l, p(l), is multiplied by the
percentage of costs associated to class l (i.e. sum of a row in the cost matrix),
c(l):

p′(l) =

∑

i∈S wiI(yi = l)
∑

i∈S wi
︸ ︷︷ ︸

p(l)

∑K

k=1 C(l, k)
∑K

i=1

∑K

j=1 C(i, j)
︸ ︷︷ ︸

c(l)

, (6)

where I() is the indicator function.
2. On each leaf node the minimum cost rule is applied for classification:

h = argmin
l

C(l,−)(p(1), . . . , p(K))⊤. (7)

During the training phase, for every decision tree and leaf node S, we store:
1) the minimum cost label, hS and 2) a K × 1 vector, aS , with the mean AR
of each view class. During the detection phase, the trees are traversed with the
feature vector x corresponding to a candidate window (see Fig.1). As we have
seen in section 2, the vector f(x) is computed as a linear combination of tree
labels outputs h, codified as its corresponding margin vector g(x) = yh ∈ Y .
Vector f(x) is then used in equation (3) to obtain the minimum cost view class
estimation.

Our procedure to estimate the aspect ratio follows a similar approach. Let
at(x) be the per class view aspect ratios stored in the leaf node of t-th tree in
which x ends. After traversing the weak learners trees, the vector of class aspect
ratios is computed as a linear combination: a(x) =

∑M

i=tp
βiai(x). If h is the

class estimated by the BAdaCost strong learner, H(x), then the estimated AR
is given by a(h). Note here that we drop all the trees below the tp-th one. The
rationale is that in the first trees the strong classifier are not accurate enough.
In the experimental section we will see that this is in fact true and it is better
to use only the final trees in the ensemble to estimate the AR.

4 Experiments

In our experiments we have modified Piotr Dollar’s Matlab Toolbox3 with BAda-
Cost (e.g adding cost-sensitive decision trees and multi-class detection). Our
modified implementation with the BAdaCost detectors is already available4.

In the experiments we use a detection problem in which the target object
changes its Bounding Box AR depending on the view angle. Car detection in
the KITTI dataset [6] is a good example of this kind of problem. The database
presents three subsets: easy, moderate and hard (easy ⊂ moderate ⊂ hard).
We carry out the evaluation in each level separately. In total there are 7481
images for training and 7518 for testing. Since the testing images have no ground
truth, we split the train set in training and validation subsets: cars in the first
6733 images (90%) to train (KITTI-train90) and the last 748 images (10%) as
validation (KITTI-train10).

3 https://github.com/pdollar/toolbox
4 https://github.com/jmbuena/toolbox.badacost.public
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Fig. 2: KITTI cars classes we use in our experiments.

We divide the images into K=20 view classes (see Fig. 2). With the BAdaCost
algorithm we use cost-sensitive decision tree weak learners that select features
from LDCF channels [13]. In all the experiments we train a car model of size
48×84 pixels, AR= 1.75.We start the pyramid one octave above the actual image
size, to detect cars 25 pixel high. This approach produces detection bounding
boxes with fixed AR of 1.75 (Fixed-Equal approach). On the other hand, since
the multi-class detector outputs the view class, we can correct the fixed size
window to the training mean (Fixed-Class-Mean approach) AR of the predicted
class view as done in [9, 5].

We train the classifier storing the mean AR of each class in tree leaves as
explained in section 3. During training we perform 4 rounds of hard negatives
mining with the KITTI training image subset (KITTI-train90). We set the num-
ber of cost-sensitive trees to T=1024 (4 rounds with 32, 128, 256 and T weak
learners, respectively), tree depth to D=8, the number of negatives per round to
add to N = 7500 and the total amount of negatives to NA = 30000.

The costs matrix is set to weight up gross errors between view classes. This is
important because estimating the wrong class will output a Bounding Box with
the wrong AR (e.g. frontal car, AR=1.0, to left side car, AR>>1.0). We show
the cost matrix we use in Fig. 3. The non-car class has label 1. Positive classes
have the labels shown in Fig. 2 plus one.

Predicted class
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Fig. 3: Costs matrix used in our experiments.

First, we train only one detector with the mean aspect ratio of each view
class stored on the tree leaves. The detector uses KITTI-train90 for training
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and KITTI-train10 for testing. We set the detection threshold to an entersection
over union (IoU) value 0.7, es established in the KITTI benchmark. Then, we use
different strategies to estimate the ARs using this detector. First we test the AR
estimation algorithm introduced section 3 with different values of tp (first tree
to use in the estimation). In Fig. 4 we show that neither using all the trees nor
using the last few trees are the best strategies. We can see that, in the Moderate
KITTI car detection problem, using all trees starting with tp = 950 we get the
best result.
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Fig. 4: Using different number of weak learners for estimating the detections AR.
Here we train in KITTI-train90 and test in the validation subset, KITTI-train10.

Secondly, once we have found the best tp value we can compare it with other
AR estimation strategies: use the output of the fixed size sliding window detector
(Fixed-Equal), modify the fixed aspect ratio window with the estimated class
view aspect ratio (Fixed-Class-Mean) and, finally, our proposal (Estimated-AR).
In Fig. 5 we confirm that a fixed aspect ratio detector as Fixed-Equal, gets the
worst results. We get a much better result in the Moderate KITTI subset (the
one used for ranking) with the Fixed-Class-Mean procedure. On the other hand,
we can improve even further the AP by using our Estimated-AR strategy. We
get an better AP by 1.7%, 1.2% and 1.1%, respectively, in the Easy, Moderate
and Hard settings. Given that our procedure is computationally cheap it is a
significant improvement. On Fig. 6 we show results of the different methods
on images were our method (Estimated-AR) improves over the baseline (Fixed-
Class-Mean).

To further analyze the performance of our procedure (Estimated-AR) with
respect to the baseline (Fixed-Class-Mean), we have performed an additional
experiment varying the IoU threshold (see table 1). The good behavior of our
approach is more evident when we look for higher overlapping in the detection.
With a threshold of IoU= 0.8, Estimated-AR, in Moderate subset, is better by
11,53% (from 44.2% to 49.3%) and with IoU= 0.9 it is better by 63.15% (from
1.9% to 3.1%).

5 Conclusions

Detection algorithms have evolved over time by changing various components of
the pipeline. Some of these improvements, however, have been exploited only in
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Fig. 5: Comparing different strategies to compute the detection AR. Here we
train in KITTI-train90 and test in the validation subset, KITTI-train10.

Fig. 6: Sample car detection improvement with AR estimation on KITTI-train10.
In green, red and yellow we show respectively the ground truth, Estimated-AR-
Mean and Fixed-Class-Mean true positives for the data base moderate settings.

Table 1: AP for different IoU values on the KITTI train90/train10 experiment

Algorithm / IoU 0.5 0.6 0.7 0.8 0.9

Easy
Fixed-Class-Mean 95.6 % 94.9 % 84.8 % 44.2 % 1.5 %

Estimated-AR 95.6 % 94.8 % 86.4 % 49.3 % 2.8 %

Moderate
Fixed-Class-Mean 90.3 % 89.8 % 83.3 % 44.2 % 1.9 %

Estimated-AR 90.3 % 89.8 % 84.5 % 47.7 % 3.1 %

Hard
Fixed-Class-Mean 79.5 % 78.2 % 67.2 % 36.9 % 1.7 %

Estimated-AR 79.5 % 78.1 % 68.3 % 39.1 % 2.9 %
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the context of modern deep neural nets. In this paper we improve the perfor-
mance of Boosting-based detectors by refining the target bounding box using a
new cost-sensitive multi-class boosting scheme. This is a relevant result in the
construction of Cyberphysical Systems, given the computational efficiency of this
family of algorithms.

In the experiments we show that our approach improves the detection AP
with respect to the baseline Fixed-Class-Mean regressor. Moreover, it beats
the results of its closest Boosting competitor [7]. This Boosting-based detec-
tor achieves 52.9% AP in the moderate KITTI testing set, where as our result
is 67.23%.

If we analyze the results in the moderate set in Table 1 we can see that for
an IoU of 0.5, we achieve a result above 90% AP. However, as the IoU threshold
increases, the AP goes down to 3.1% in the most demanding case, IoU=0.9.
This means that most of the detections are correct, but the accurate location of
the object bounding box is an important source of errors that should be further
studied in the future.

The use of proper data augmentation and alternative and more accurate
bounding box regression algorithms are future research avenues that will further
improve AP with no extra computing cost.
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