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Abstract

One of the major challenges that visual tracking algorithms face nowadays is being
able to cope with changes in the appearance of the target during tracking. Linear
subspace models have been extensively studied and are possibly the most popular
way of modelling target appearance. We introduce a linear subspace representation
in which the appearance of a face is represented by the addition of two approxi-
mately independent linear subspaces modelling facial expressions and illumination
respectively. This model is more compact than previous bilinear or multilinear ap-
proaches. The independence assumption notably simplifies system training. We only
require two image sequences. One facial expression is subject to all possible illumina-
tions in one sequence and the face adopts all facial expressions under one particular
illumination in the other. This simple model enables us to train the system with
no manual intervention. We also revisit the problem of efficiently fitting a linear
subspace-based model to a target image and introduce an additive procedure for
solving this problem. We prove that Matthews and Baker’s Inverse Compositional
Approach makes a smoothness assumption on the subspace basis that is equiva-
lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs
from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap-
proaches in that we make no smoothness assumptions on the subspace basis. In the
experiments conducted we show that the model introduced accurately represents
the appearance variations caused by illumination changes and facial expressions.
We also verify experimentally that our fitting procedure is more accurate and has
better convergence rate than the other related approaches, albeit at the expense of
a slight increase in computational cost. Our approach can be used for tracking a
human face at standard video frame rates on an average personal computer.

Key words: linear models of appearance, illumination invariance, efficient linear
subspace model fitting, facial expression analysis
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1 Introduction

Much effort is being devoted nowadays to developing machines that can recog-
nise people and interpret their actions, gestures and facial expressions. Deter-
mining a person’s facial expression or in which direction a person is looking
is extremely important for developing advanced human computer interfaces
that are aware of people and their emotions. It also plays an important role in
other computer vision applications, such as lip reading, graphical animation,
surveillance or video-based face recognition.

Tracking a human face is a challenging problem because the face is a de-
formable low-textured object and because its visual appearance changes dra-
matically with identity and in the presence of occlusions, changes in the il-
lumination or pose. One way to cope with this problem is by adopting a
model-based image analysis approach. This approach uses a face model de-
scribing all possible facial configurations and the way the face interacts with
scene illumination. The parameters that best fit the model to the target image
describe scene illumination, the pose and facial expression.

Model-based computer vision brings about two other problems, namely, model
construction and model fitting. We need a model that is accurate enough to
precisely describe and separate all sources of variation in a face’s appearance.
To do this we can build off-line, and possibly manually, a model of the face that
is so general as to represent any possible face under any imaging condition.
The major drawback of this approach is that this model will require many
degrees of freedom in order to be able to represent all possible variations
in the appearance of any human face. Fitting this high dimensional model
to a target image is a hard problem [1]. Complex minimisation algorithms
have to be used in order to avoid local minima. Alternatively, we can build
a simpler model valid only for the face identity and imaging conditions of
a given task. In this case, it is easier to devise an efficient and robust model
fitting procedure [1]. However, if the tracker is to be at all useful, a simple, and
possibly automated, procedure for model construction is needed. In this paper
we introduce a real-time face tracking system based on the second approach.

Being able to identify and model some of the various sources of facial ap-
pearance variation is also a key issue for many applications. In an automated
graphical animation system, for example, the tracker must estimate and sep-
arate appearance changes due to facial expressions from variations caused by
illumination, so that these changes can be re-targeted in a graphical model. In
this paper we introduce a subspace representation of the appearance of a face,
that models facial expressions and illumination variations. In this approach a
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face is represented by adding two linear subspaces. The first subspace models
the deformations of the face caused facial by expressions. The second subspace
represents variations in facial appearance caused by changes in the illumina-
tion. Both subspaces are independent of each other in the sense that they have
different basis, which can be trained almost independently. With this model
we will be able to train the tracker without any manual intervention.

Most applications not only require visual tracking algorithms to be robust to
changes in the target appearance, but also to work in real-time. We introduce
a minimisation procedure which can efficiently fit the previous appearance
model to a target image. In the experiments conducted we show that our
procedure is able to track a face at frequencies higher than video frame rates,
running on an average personal computer.

In summary, one of the present challenges of face tracking is to develop easy-
to-train, efficient and robust tracking algorithms that can identify the vari-
ous sources of facial appearance variation. In this paper we introduce a face
tracking system that: a) can be trained without any manual intervention; b)
identifies changes in facial appearance caused by facial expressions and by
illumination changes; and c) runs at frequencies higher than standard video
frame rates.

1.1 Related work

Model-based face tracking is generally stated as a minimisation problem. The
tracker tries to minimise the discrepancies between the model and the ac-
tual configuration of the face in each image of a sequence. Early approaches
modelled the face as a rigid 3D textured object and tracked it using corner
features [2] or a global model of face texture mapped onto planar [3], ellip-
soidal [4] or cylindrical [5] 3D models.

Rigid and non-rigid facial deformation was initially represented using physics-
based anatomically motivated models [6] or local parametric motion mod-
els [7]. Later, changes in facial expressions were also modelled using image-
based approaches and generative linear models of shape and texture. Image-
based approaches model the visual appearance of a deforming face using lin-
ear subspace representations of facial appearance [8]. More recently, non-linear
subspaces have also been used to model the appearance of a face across changes
in pose, facial expression and illumination [9,10]. Generative linear models of
shape and texture are based on the fact that the visual appearance of a deform-
ing face can be modelled by combining two linear subspaces, one representing
changes in shape (e.g. facial expressions, identity) and the other representing
changes in texture caused, for example, by variations in identity or illumina-
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tion [11–14]. They use a polygon mesh that can be deformed according to a
statistically learned set of modes of deformation. Most prominent examples of
this approach are Cootes, Edwards and Taylor’s 2D Active Appearance Mod-
els [15,12] and Blanz and Vetter’s 3D Morphable Models [11]. Anthropometric
face models use a 3D mesh whose structure and modes of deformation have
been constructed by hand from tables of anthropometric measurements of the
face [16].

The main drawback of the approaches based on generative linear models of
shape and texture is that they have complex training procedures that often
require manual intervention [12,17,18]. This problem is even more critical in
hand-made physics and anthropometric-based face models [6,16]. On the other
hand, image-based approaches are gaining popularity, since there are various
procedures for automatically learning linear [8,19,20] or non-linear [9] subspace
models and for probabilistically representing the dynamics of appearance vari-
ation [21–24]. Unfortunately, automated procedures for learning image-based
models [8,9,19] cannot automatically factor the various sources of appearance
variation. In this paper we will introduce a subspace representation of facial
appearance that can be automatically trained and separates facial expressions
from illumination variations.

Subspace [25] and geometrical [26,27] approaches have been used tradition-
ally to separate illumination changes from other sources of variations in facial
appearance to build face recognition systems. Subspace approaches have also
been used to separate multiple orthogonal factors using bilinear [28,29] or
multilinear [30] models. Tenenbaum and Freeman [28] used SVD to decom-
pose face appearance into two factors: pose and identity, termed content and
style. Grimes et al. [29] used Expectation Maximisation and particle filters to
introduce a probabilistic approach in the bilinear model. More recently, proce-
dures for separating style and content on a non-linear manifold have also been
proposed [31]. Vasilescu and Terzopoulos used multilinear tensor analysis to
decompose face images into orthogonal [30] and independent [32] factors rep-
resenting identity, expression, pose and illumination. These approaches cannot
be used in a real-time tracker, either because they were conceived to analyse
a single image [26], for use in batch processing [28,30,32], or because of the
computational requirements of the minimisation procedure [29,31].

In this paper we show that the appearance of a deforming face perceived under
varying illumination can be represented up to a first order approximation by
adding two linear subspaces. The first subspace describes the deformations of
the face caused by facial expressions and the second one models changes in the
illumination. Both subspaces are independent of each other in the sense that
they can be trained almost independently (see section 5). This linear model
will enable us to train the system without any manual intervention and to
build a tracker that can factor changes in facial expressions from variations in
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illumination. Another remarkable property of this model is that it will require
much fewer training images than earlier bilinear and multilinear approaches.
Since deformation and illumination subspaces are assumed to be independent,
we will not need training samples with all facial expressions under all possible
illumination conditions, as was the case previously. We will only require two
sets of sample images. In one set one facial expression is subject to all possible
illuminations and in the other the face performs all facial expressions under
one illumination. Consequently, the number of parameters and training images
with this model will grow linearly with image size, whereas they would grow
non-linearly in previous bilinear or multilinear approaches.

There are two basic approaches to linear subspace model registration. Ap-
proaches based on traditional optimisation techniques [3,33–35] and approaches
based on particle filters [29,20,36]. Very efficient registration procedures have
been introduced using Gauss-Newton iterations [3,34,35]. Unfortunately, de-
pending on the structure of the target and the starting point, they may con-
verge to a local minimum. To avoid this problem less efficient multi-scale min-
imisation must be used [33]. Particle filters, however, have recently emerged
as a simple and robust method for model adjustment in the presence of non-
normal measurement and/or dynamics. They do not get trapped in local min-
ima, but their computational cost grows exponentially as the number of model
parameters increase. Rao-Blackwellisation [37] is used in [36] to improve track-
ing efficiency by integrating out the coefficients of the linear subspace model.

In section 3 we introduce a minimisation procedure, based on Gauss-Newton
iterations, which can efficiently fit a linear subspace model to a target image. It
is directly related to Hager and Belhumeur’s factorisation-based approach [3],
whose tracking procedure is robust to changes in illumination, but assumes a
rigid face. We have extended their approach to the case in which the target face
can also deform. It is also related to the series of papers by Baker, Matthews
et al. [38,35,34,39]. In section 3 we revisit their Inverse Compositional Image
Alignment (ICIA) algorithm introduced in [38,35] and prove that its subspace
extension introduced in [34] is based on a smoothness assumption equivalent
to the one used by Hager and Belhumeur in [3], which is not valid for a
deforming face. In the experiments described in section 6 we compare the
fitting procedure introduced in this paper with those from [3,34] and show that
the procedure introduced here has better convergence properties for difficult
images.

Some preliminary results of this work appeared in [40,41].
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2 The model

In this section we introduce a new appearance-based model representing the
variations in the appearance of a face caused by changes in facial expressions
and in the illumination of the scene. It is based on a first order approximation
to the face’s reflectance function.

Let I(x, t) be the image acquired at time t, where x is a vector representing
the co-ordinates of a point in the image, and let I(x, t) be a vector storing the
brightness values of I(x, t). Let us assume that the target moves rigidly (with
no deformation) between time instants t0 = 0 and t, and that this motion can
be described by the motion model f(x,µ), µ being the vector of rigid motion
parameters. If there are no changes in the target appearance caused by the
scene illumination, the brightness constancy equation I(f(x,µt), t) = I(x, 0)
holds. If the face is now allowed to deform non-rigidly, then we may write a
new brightness constancy equation I(f(x,µt), t) = I(x, 0) + [Bdcd,t](x), where
the non-rigid deformations have been modelled by a linear subspace with basis
Bd, mean value I(x, 0) and linear deformation parameters cd,t. We denote the
value of Bdcd,t for the pixel with position x by [Bdcd,t](x). Finally, for a given
rigid motion µt and deformation cd,t, we could also model the illumination
of the face by including a new subspace with basis Bi and linear illumination
parameters ci, which represents all the possible illuminations of the mean face
I(x, 0). So, the final brightness constancy equation is

I(f(x,µt), t) = I(x, 0) + [Bici,t](x) + [Bdcd,t](x) (1)

= I(x, 0) + [Bct](x) ∀x ∈ F ,

where B = [ Bi| Bd ], c⊤t = (c⊤i,t, c
⊤
d,t)

⊤, k = dim(ct), and F represents the set
of pixels of the face used for tracking. Vectors ci and cd are respectively the
illumination and the deformation appearance parameters.

Models similar to (1) have been used previously in the context of illumination
change invariant 3D and 2D rigid face tracking. LaCascia, Sclarof and Athit-
sos [5] introduced a 3D rigid face model, whose constancy equation also had
two independent linear subspaces. Each subspace represented illumination and
rigid motion warping templates respectively. Also, Hager and Belhumeur [3]
used a 2D rigid face model with a similar constancy equation in which a single
linear subspace was used to model changes in illumination. Our model dif-
fers from these in that the target face can deform and the appearance model
is computed in the image plane, rather than the texture map plane, as is
the case of [5]. Like our model, Tenenbaum and Freeman’s [28] and Grimes,
Shon and Rao’s [29] bilinear models and Vasilescu and Terzopoulos’ multi-
linear model [30] also used a linear approach to represent variations in the
illumination and facial expression, but illumination and appearance are not
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independent in their models. Here we assume that illumination and facial de-
formation subspaces are independent. This assumption gives our model several
remarkable properties:

• It reduces the number of model parameters, which grow linearly instead
of quadratically with image size, as would be the case with the other ap-
proaches.

• It reduces the number of training images. We will not need training samples
with all facial expressions under all possible illumination conditions, as was
the case in all previous bilinear or multilinear approaches. We will only
require two sets of sample images: one in which one facial expression is
subject to all possible illuminations and another set in which the face adopts
all facial expressions under one particular illumination (see section 5).

• Finally, because of the previous property, this model can be trained auto-
matically without any manual intervention (see section 5).

The experiments described in sections 5 and 6 show that the model introduced
in this section accurately models facial expressions and illumination.

3 Efficient linear subspace model fitting

If the brightness constancy equation (1) holds, then tracking consists of es-
timating, for each image in the sequence, the values of the motion, µ, and
appearance, c, parameters that minimise the error function

E(µ, c) =
∑

∀x∈F

[I(f(x,µ), t) − I(x, 0) − [Bc](x)]2

= ||I(f(·,µ), t) − I(0) − Bc||2, (2)

where I(f(·,µ), t) denotes the vector of values of I(f(x,µ), t) for all x ∈ F .
In order to robustly estimate the minimum value of (2), the quadratic error
norm can be replaced by a robust one (see e.g. [33,3,39]). Generally, it is hard
to minimise (2) since pixel brightness values are non-linearly related to µ and
c.

Different subspace-based tracking approaches use various minimisation proce-
dures. In [33], Black and Jepson use an analogy with parametrised optical flow
estimation to introduce an iterative algorithm based on a gradient-descent pro-
cedure with multi-resolution and a robust error norm. Their approach is com-
putationally very demanding, since, for example, the image Jacobian has to be
computed for each incoming image and for each level in the multi-resolution
pyramid. This makes their approach unsuitable for a real-time implementa-
tion. Particle filter-based approaches [29,20,36] are inadequate for an efficient
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implementation too since our parameter space will be of the order of tens of
parameters.

Other approaches based on traditional optimisation techniques [38,3,42,5] use
the continuity of motion to find an initial starting point in the minimisation,
based on which they introduce efficient minimisation procedures that can be
used to track at video frame rates. Suppose that µt and ct are known and
describe the position and deformation of the target at time t. Then, at time
t + τ , the minimisation can be expressed in terms of the parameter offsets δµ
and δc

E(δµ, δc) = ||I(f(·,µt, δµ), t + τ) − I(0) − B(ct, δc)||
2, (3)

where we use B(ct, δc) to denote that the value of that vector depends on both
ct and δc. The minimum of E(δµ, δc) can be iteratively reached by expanding
the Taylor series of E and solving linearly for δµ and δc. Depending on how
the parameter offsets are combined with µt and ct these efficient minimisation
procedures can be grouped into compositional and additive approaches.

In the compositional approaches [38,42,34,43]

f(x,µt, δµ) = f(x,µt+τ ) = f(g(x, δµ),µt), (4)

where f and g are warping functions such that f◦g 7→ f and g(x,0) = x. Baker
and Matthews’ Inverse Compositional Image Alignment (ICIA) [38,35,34] and
Jurie’s Hiperplane Approximation Template Matching [42] are two prominent
examples. The main advantage of the compositional approach is that the Jaco-
bian of the image brightness values w.r.t. the motion parameters that emerges
in the Taylor series expansion of E is constant, and hence can be precomputed
off-line in order to efficiently solve the minimisation.

In the additive algorithms

f(x,µt, δµ) = f(x,µt+τ ) = f(x,µt + δµ). (5)

Lucas and Kanade’s [44] seminal work and Hager and Belhumeur’s [3] and
La Cascia, Sclaroff and Athitsos’ [5] subspace-based results are well known
examples of this approach. Its main advantage is that it can be applied to any
warping function f , as long as it is differentiable.

Both additive and compositional approaches have their drawbacks. For the
compositional approach, f and g have to be closed under composition, some-
thing which does not hold for subspace-based models and additional approxi-
mations are necessary [34]. On the other hand, the additive approach is com-
putationally more demanding, since the image Jacobian must be recomputed
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for each frame in the sequence, although, for certain fs, the Jacobian can be
factored and can also be efficiently estimated [3].

In this section we revisit both approaches and introduce an efficient minimi-
sation scheme for (3) based on an additive algorithm. The new minimisation
is more general than the subspace-based ICIA algorithm described in [34]
or Hager and Belhumeur’s [3] previous factorisation-based additive approach,
since both approaches are based on similar assumptions on the smoothness of
the subspace basis, whereas the new procedure makes no such assumption.

In the following sections we will briefly review the compositional and additive
image alignment procedures and introduce the new algorithm in the context
of the additive approach.

3.1 Basic compositional image alignment algorithm

In the basic approaches we will assume that the target’s appearance is con-
stant in the sequence. Later we lift this restriction. Let us assume for now
that target’s appearance does not change, i.e. c = 0. In the compositional
framework, the parameter offsets, δµ, are compositionally combined with the
known position of the target at time t, µt, to obtain µt+τ , as shown in (4) (see
Fig. 1). Therefore, equation (3) is transformed into

E(δµ) = ||I(f(g(·, δµ),µt), t + τ) − I(0)||2.

z = f(v, µt)

v = g(x, δµc)

y = f(x, µt)

z = f(x, µt+τ ) = f(g(x, δµc), µt) = f(x, µt + δµa)

I(y, t)

I(z, t + τ)

I(x, 0)

I(v, t + τ)

Fig. 1. Relation among images in the basic compositional and additive image align-
ment algorithms. Vectors δµa and δµc are the additive and compositional parameter
increments respectively.

The ICIA algorithm assumes g ≡ f−1 and introduces a modification in the
previous scheme by exchanging the rôles of I(x, t + τ) and I(x, 0) [35,34].
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Rather than computing the incremental warp w.r.t. I(f(x,µt), t + τ) it is
computed w.r.t. I(x, 0)

E(δµ) = ||I(f(·,µt), t + τ) − I(f(·, δµ), 0)||2. (6)

Expanding a Taylor series of (6) we get

E(δµ) = ||E − Mδµ||2 (7)

where M =
[

∂I(f(·,µ),0)
∂µ

]

µ=0
is the Jacobian of I(0), w.r.t. µ, and E = I(f(·,µt), t+

τ) − I(0) is the error made when warping the image acquired at time t + τ
with parameters µt. Now, the motion offset can be estimated by minimising
(7). This is achieved by solving

M δµ = E . (8)

The least-squares solution of (8) is given by

δµ = M
+E , (9)

where M
+ is the generalised matrix inverse of M. Note that M

+ is a constant
matrix that can be precomputed off-line. This is the key to this algorithm’s
efficiency.

Once we know the motion offset the motion parameters at time t + τ may be
obtained from (4)

f(x,µt+τ ) = f(f−1(x, δµ),µt).

The major advantage of the compositional approach is that the Jacobian M is
constant, and can therefore be precomputed off-line in order to efficiently min-
imise equation (6). Unfortunately, subspace-based models of appearance are
not closed under composition, and approximations to the basic compositional
approach must be introduced (see e.g. [34]) in order to minimise (3).

Although it was introduced in the context of the additive image alignment
approach, the dynamic extension of Jurie’s Hiperplane Approximation Tem-
plate Matching algorithm [42] is actually a compositional procedure based on
a constant image Jacobian, like ICIA. The major difference is that, in this
case, M+ is directly estimated from (9) by least-squares approximation from a
set of training samples synthetically generated by warping I(f(x, δµ), 0) with
different values of δµ. Estimating M

+ in this way improves the convergence of
the minimisation [42].
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3.2 Subspace extension to ICIA

In [34] Matthews and Baker introduced an extension to the basic ICIA algo-
rithm in which the target’s appearance is allowed to vary. Here we will revisit
their approach and prove that it is based on an smoothness assumption on
the subspace basis.

Following the conventions of ICIA, (3) is now expressed as

E(δµ, c) = ||I(f(·,µt), t + τ) − I(f(·, δµ), 0) − [Bc](f(·, δµ))||2. (10)

This expression must be simultaneously minimised with respect to δµ and c.
If we denote the linear subspace spanned by B as span(B) and its orthogonal
complement by span(B)⊥, then (10) can be rewritten as

E(µ, c) = ||I(f(·,µt), t + τ) − I(f(·, δµ), 0) − [Bc](f(·, δµ))||2span(B)⊥ +

||I(f(·,µt), t + τ) − I(f(·, δµ), 0) − [Bc](f(·, δµ))||2span(B), (11)

where || · ||2L denotes the square of the L2 norm of the vector projected onto
the linear subspace L. The subspace extension introduced in [34] implicitly
assumes

[Bc](f(·, δµ)) = Bc (12)

where [Bc](f(·, δµ)) denotes the result of warping each column of B with
f(x, δµ) and multiplying the result with c. Given that || · ||2span(B)⊥ only con-

siders the component of vectors in the orthogonal complement of span(B), any
component in span(B) can be dropped. Then, using assumption (12), equation
(11) simplifies to

E(µ, c) = ||I(f(·,µ), t + τ) − I(f(·, δµ), 0)||2span(B)⊥ +

||I(f(·,µ), t + τ) − I(f(·, δµ), 0) − Bc||2span(B). (13)

Since the first term of (13) only depends on δµ, minimising it is equivalent
to solving the basic ICIA minimisation (7) in the subspace span(B)⊥. This is
achieved by just premultiplying either M or the error term E by the projection
matrix NB⊥ = I− BB

+ (see Fig. 2). Now, the equation equivalent to (8) is

NB⊥M δµ = E ,
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and the solution is

δµ = (M⊤NB⊥M
⊤)−1

M
⊤
NB⊥ E .

Here we have used the following properties N⊤
B⊥

= NB⊥ and N
⊤

B⊥
NB⊥ = NB⊥ .

M

BB
+
M

M− BB
+
M

B

B⊥

Fig. 2. The components of M orthogonal to B

Once δµ is known, c can be obtained by minimising the second term of (13),

c = B
+[I(f(·,µt), t + τ) − I(f(·, δµ), 0)]. (14)

In the experiments section we will denote this algorithm as MBC (Mathews
and Baker’s Compositional approach) and we will show that the approxima-
tion introduced in (12) worsens the convergence of the minimisation and biases
the solution.

3.3 Correct compositional approach

Here we describe a correct compositional algorithm which is less efficient, but
minimises (10) properly.

Following the approach in [13], we will incrementally compute both motion,
µ, and appearance, c, parameters. Motion parameters will be estimated com-
positionally, while appearance parameters will be estimated additively. In this
way we will be able to simultaneously solve (3) for both δµ and δc.

Equation (3) would now be expressed as

E(δµ, δc) = ||I(f(·,µt), t + τ) − I(f(·, δµ), 0) − [B(ct + δc)](f(·, δµ))||2.(15)

Expanding a Taylor series of (15) at δµ = δc = 0 we get

E(δµ, δc) = ||I(f(·,µt), t + τ) − I(0) − Bct − [M + Ḃct]δµ − Bδc||2, (16)
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where, again, M =
[

∂I(f(·,µ),0)
∂µ

]

µ=0
is the Jacobian of I(0) with respect to µ,

and

Ḃct =
∂[Bc](f(·,µ))

∂µ

∣
∣
∣
∣
∣
µ=0

=
k∑

i=1

cti




∂bi(f(·,µ))

∂µ

∣
∣
∣
∣
∣
µ=0





is the Jacobian of the subspace basis w.r.t. the motion parameters, bi being
the ith column of B, cti the ith component of ct and k the dimension of the
subspace.

Now, the minimum of (16) can be computed by solving

A(ct)

[

δµ

δc

]

= E , (17)

where A(ct) = [M+ Ḃct | B] and, in this case, E = I(f(·,µt), t+ τ)− I(·, 0)−Bct.
The solution to (17) is

[

δµ

δc

]

= A(ct)
+E .

Now f(x,µt+τ ) = f(f−1(x, δµ),µt) and ct+τ = ct + δc. In the experiments
conducted in section 6 this algorithm is termed COC (COrrect Compositional
approach).

Unfortunately A(ct)
+ depends on ct and has to be recomputed for each image

in the sequence. Although we now have a genuine minimiser of (3), each iter-
ation of the algorithm is computationally more expensive than Matthews and
Baker’s approximated ICIA [34] and the efficient additive algorithm that will
be introduced in the following section.

Here we can introduce a new approximation:

Ḃct =
∂[Bc](f(·,µ))

∂µ

∣
∣
∣
∣
∣
µ=0

= 0. (18)

In this case we have a new algorithm whose efficiency is similar to ICIA’s, since
A

+ is constant. This is actually the approximation used in [13]. In the exper-
iments conducted in section 6 this algorithm is denoted APC (APproximate
Compositional approach), and we will see that, as with ICIA, assumption (18)
worsens convergence.
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3.4 Basic additive image alignment algorithm

Here we describe the image alignment algorithm introduced in Lucas and
Kanade’s seminal work [44]. Let us assume again that the target appearance
does not change. In this framework, the parameter offsets, δµ, are additively
combined with the known position of the target at time t, µt, to obtain µt+τ ,
as shown in (5) (see Fig. 1). Therefore, equation (3) is transformed into

E(δµ) = ||I(f(·,µt + δµ), t + τ) − I(0)||2.

To do Gauss-Newton iterations, a Taylor series of E is expanded at (δµ =
0, t = t), producing a new error function

E(δµ) = ||E − M(µt)δµ||
2 (19)

where M(µt) =
[

∂I(f(·,µ),t)
∂µ

]

µ=µt

is the Jacobian of the image acquired at time

t, w.r.t. to the motion parameters µ, and E = I(f(·,µt), t + τ) − I(0) is the
error made when warping the image acquired at time t + τ with parameters
µt. Here it is assumed that

[

∂I(f(·,µt), r)

∂r

]

r=t

τ ≈ I(f(·, δµt), t + τ) − I(f(·, δµt), t).

Now, the motion offset can be estimated by minimising (19). This is done by
solving

M(µt) δµ = E . (20)

The least-squares solution of (20) is given by

δµ = M
+(µt)E . (21)

The motion parameters at time t + τ are obtained from (5).

The main advantage of the additive approach is that it can be applied to
any warping function f(x,µ), provided it is differentiable w.r.t. µ. Another
advantage is the simple procedure used to update the motion parameters,
µt+τ = µt+δµ. The main drawback of this approach is its computational cost,
since M(µt) has to be recomputed and inverted for each frame in the sequence.
This prevents this algorithm from being used in real-time applications.
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Hager and Belhumeur [3] introduced an efficient procedure for minimising
(19). By using a restricted version of the brightness constancy equation (1)
in which c = 0, the Jacobian of I(t), M(µt), can be expressed in terms of the
gradients of I(0) (a particularisation of (25) for c = 0).

3.5 Efficient subspace extension for the additive approach

Following the convention of the additive approach (5), equation (3) is now
expressed as

E(δµ, δc) = ||I(f(·,µt + δµ), t + τ) − I(0) − B(ct + δc)||2.

Expanding a Taylor series of this equation at δµ = δc = 0, and t = t we
obtain a new linearised error function

E(δµ, δc) = ||I(f(·,µt), t + τ) − I(0) − Bct + Mδµ − Bδc)||2, (22)

where M =
[

∂I(f(·,µ),t)
∂µ

∣
∣
∣
µ=µt

]

is the N × n (n = dim(µ)) Jacobian matrix of

I(f(·,µt), t). Hager and Belhumeur [3] also introduced an efficient procedure
for minimising (22)in the context of invariance to illumination changes, by
assuming ∇x[Bc](x) = 0, and estimating the minimum of (22) in the subspace
orthogonal to B. In this case M can be expressed in terms of the gradient
of I(0) and can be partially precomputed off-line. The result of this off-line
computation is a Jacobian that only depends on µt. In the experiments section
we denote this algorithm as HBA (Hager and Belhumeur’s Additive approach).

In this section we introduce an efficient procedure for minimising (22) based
on a factorisation of the Jacobian without Hager and Belhumeur’s restriction.
Following an approach similar to [3], we will use the Gauss-Newton procedure
and we will show that the Jacobian can be efficiently computed by expressing
it in terms of the gradient of the subspace basis vectors. Then δµ and δc will
be estimated in closed-form. In the experiments section we will denote this
new algorithm with the letters OUA (OUr Additive approach).

3.5.1 Jacobian matrix factorisation

One of the obstacles for minimising (22) on-line while tracking is the compu-
tational cost of estimating M for each frame. In this subsection we will show
that M can be factored into the product of two matrices, M0Σ(µ, c), where M0

is a constant matrix, which can be computed off-line.
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Each row mi of M can be written as the product

mi = ∇fI(f(xi,µt), t)
⊤fµ(xi,µt). (23)

where ∇fI(f(xi,µt), t)
⊤ =

[

∂I(y,t)
∂y

∣
∣
∣
y=f(xi,µt)

]

and fµ(xi,µt) =
[

∂f(xi,µ)
∂µ

∣
∣
∣
µ=µt

]

.

Taking derivatives w.r.t. xi on both sides of (1) we get

∇fI(f(xi,µt), t)
⊤fxi

(xi,µt) = ∇xi
I(xi, 0) + ∇xi

[Bct](xi), (24)

where fxi
(xi,µt) =

[

∂f(x,µt)
∂x

∣
∣
∣
x=xi

]

and ∇x denotes the image gradient. Finally,

from (23) and (24) we get a new expression for M, in which the Jacobian is
now expressed in terms of the gradients of I(0) and B and the Jacobians of f ,
which depends on µ and c. This is denoted by representing M as

M(µ, c)=










(∇x1
I(x1, 0) +

∑

j ∇x1
[bjcj](x1))

⊤fx1
(x1,µ)−1fµ(x1,µ)

...

(∇xN
I(xN , 0) +

∑

j ∇xN
[bjcj](xN))⊤fxN

(xN ,µ)−1fµ(xN ,µ)










,(25)

where bj is the jth column of B, cj is the jth element of the appearance vector
c and N is the number of pixels in F .

Let

B∇(xi) =


























∇uI(xi, 0)

∇u[b1](xi)
...

∇u[bk](xi)













⊤

,













∇vI(xi, 0)

∇v[b1](xi)
...

∇v[bk](xi)













⊤













and C =






[1 c⊤] 0⊤

0⊤ [1 c⊤]






⊤

,

where x⊤ = (u, v). Then (25) can then be rewritten as

M(µ, c) =










B∇(x1)Cfx(x1,µ)−1fµ(x1,µ)
...

B∇(xN)Cfx(xN ,µ)−1fµ(xN ,µ)










. (26)

Therefore, M can be expressed in terms of the gradient of the subspace basis
vectors, B∇, which are constant, and the motion and appearance parame-
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Fig. 3. Motion templates for the eye region with N=2100 pixels, l=35 basis vectors,
and n=4 (rotation, translation and scale). The first row shows from left to right the
mean image and the first six basis vectors. Rows two to four show, from top to bot-
tom, the motion templates corresponding to the horizontal and vertical translation,
rotation and scale respectively.

ters (µ, c), which vary over time. If we choose a motion model f such that
Cfx(xi,µ)−1fµ(xi,µ) = Γ(xi)Σ(µ, c), then M(µ, c) may be factored into

M(µ, c)=










B∇(x1)Γ(x1)
...

B∇(xN)Γ(xN)










Σ(µ, c)=M0Σ(µ, c), (27)

where M0 is a constant matrix and Σ depends on c and µ. The columns of M0

are the motion templates of our tracking algorithm. If we use a motion model
with n parameters and an appearance subspace basis with l vectors we will
have

M0 = (m1
1, . . . ,m

l
1,m

1
2, . . . ,m

l
2, . . . ,m

1
n, . . . ,m

l
n)

where mi
j is the motion template corresponding to the jth motion parameter

and the ith subspace basis vector. Motion templates can be represented as
images (see Fig. 3).

In section A we show how the factorisation introduced above applies to the
motion models most commonly used in computer vision.

3.5.2 Minimising E(δµ, δc)

The minimum of (22) can be estimated by least-squares






δµ

δc




 = −(M⊤J MJ)−1

MJE , (28)
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where MJ = [M| − B] and E = I(f(·,µt), t + τ) − I(0) − Bct.

Using the matrix inversion lemma (M⊤J MJ)−1 can be expanded into






M
⊤
M − M

⊤
B

−B
⊤
M B

⊤
B






−1

=






(M⊤NBM)
−1 (M⊤NBM)

−1
M
⊤
B(B⊤B)−1

(B⊤NMB)−1
B
⊤
M(M⊤M)−1 (B⊤NMB)−1




 ,(29)

where NB = I − BB
+ and NM = I − MM

+. Introducing equation (29) into (28)
we get the solution for δµ and δc

δµ =−(M⊤NBM)
−1
M
⊤
NBE , (30)

δc= (B⊤NMB)−1
B
⊤
NME . (31)

Fortunately, NB is a constant matrix, then from (30) by factoring M according
to (27) we get an efficient solution for δµ

δµ = −(Σ−1
ΛM1Σ)

−1
ΛM2E (32)

where ΛM1 = M
⊤
0 NBM0 and ΛM2 = M

⊤
0 NB are constant and can be precomputed

off-line.

On the other hand, the solution obtained in (31) for δc is not efficient, since
NM depends on (µ, c) and would have to be recomputed for each frame in
the sequence. Nevertheless, an efficient solution can be obtained from (22) by
least-squares, considering that δµ is known

δc = ΛB[Mδµ + E ], (33)

where ΛB = B
+ is also constant and can be precomputed off-line.

The term Mδµ represents the brightness variation in I(t) due to a motion
of magnitude δµ. Intuitively equation (33) states that the appearance pa-
rameters are computed by projecting onto the subspace B the rectified image
corrected to take into account the incremental motion δµ and the already
known appearance Bct.

This result differs from those presented in [34] and in [3] in that: a) here model
parameters are additively updated, whereas the update procedure in [34] is
compositional; b) here subspace appearance parameters are incrementally es-
timated and additively updated (ct+1 = δc+ct) and, consequently, E includes
term −Bct, whereas, in [34] and in [3], there is no such term and appear-
ance parameters are not estimated incrementally; c) here the gradient of the
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subspace basis is part of the Jacobian, whereas, in [34] and in [3], it is not.
In the experiments conducted in section 6 we show that for our problem the
procedure introduced in this section performs better than those in [3] and [34].

3.6 On the equivalence of the subspace basis smoothness constraints

Here we will prove that the three subspace basis smoothness constraints in-
troduced in this section are equivalent.

The proof is immediate if we expand a Taylor series of [Bc](f(·,µ)) at µ = 0

[Bc](f(·, δµ)) = Bc +
∂[Bc](f(·,µ))

∂µ

∣
∣
∣
∣
∣
µ=0

δµ + o(δµ2). (34)

From (34) we can immediately infer that (12), Matthews and Baker’s smooth-

ness assumption, holds iif ∂[Bc](f(·,µ))
∂µ

∣
∣
∣
µ=0

= 0, which is actually (18), the

smoothness assumption used in [13] and also in the APproximate Compo-
sitional algorithm.

Finally, in order to prove that the above two smoothness assumptions are
equivalent to Hager and Belhumeur’s, it suffices to see that

∂[Bc](f(·,µ))

∂µ

∣
∣
∣
∣
∣
µ=0

=




∂[Bc](x)

∂x

∣
∣
∣
∣
∣
x=f(·,0)





⊤ 


∂f(·,µ)

∂µ

∣
∣
∣
∣
∣
µ=0



 .

Since the Jacobian of the image warping function w.r.t. the motion parameters
does not vanish (otherwise it would not be a warping function), ∂f(x,µ)

∂µ

∣
∣
∣
µ=0

6=

0, then ∂[Bc](f(·,µ))
∂µ

∣
∣
∣
µ=0

= 0 iif ∂[Bc](x)
∂x

∣
∣
∣
x=f(·,0)

= 0, which is actually Hager and

Belhumeur’s smoothness assumption [3].

To evaluate the correctness of these smoothness assumptions, we have com-
puted the histogram of the gradient of the illumination and deformation com-
ponents of the appearance subspace, ∇xBi(x) and ∇xBd(x). In Fig. 4 we show
three sample basis vectors of each subspace and their corresponding gradi-
ent histograms. The previous assumptions are true if the columns in B vary
smoothly when we move in the image space, and their corresponding gradi-
ent vanishes. This is approximately the case when the subspace model only
represents changes in the illumination of a rigid head, since most of the gra-
dient values cluster tightly around zero in their histograms (see Fig. 4(b)).
This was in fact the problem that Hager and Belhumeur addressed in [3]. On
the other hand, the smoothness assumption is less correct when tracking faces
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whose appearance changes due to facial deformations, since the corresponding
histograms are more spread (see Fig. 4(a)).
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(a) Deformation basis vectors.
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(b) Illumination basis vectors.

Fig. 4. Smoothness of illumination and deformation basis vectors. The top row shows
the basis vector as a 61×72 pixels image (scaled from 0 to 255) and the bottom row
depicts the corresponding histogram of the gradient vectors modules.

4 Modular appearance tracking

A modular eigenspace is a partition of the original data vector into sub-
sets (modules) in order to compute an independent subspace model for each
one [45]. This allows a more flexible, compact, accurate and better conditioned
model of the regions of interest. We will consider that all the regions are part
of the same object and hence that they share the same δµ but could have
different appearance variations.

Let {B1, · · · , Br} be the set of subspace basis for all modules. Then matrix Bme

for modular appearance-based tracking can be written as

Bme =










B1 0 0
...

. . .
...

0 0 Br










,

which is a block diagonal matrix representing the disjoint sets of image regions.
The appearance of each region is modelled by subspace base Bj. Therefore,
the appearance parameter vector will be c = (c⊤1 , · · · , c⊤r )⊤, where cj is the
parameter vector of module j. The Jacobian matrix of the modular appearance
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tracker can be written as:

M =










M0,1Σ1(µt, c1)
...

M0,rΣr(µt, cr)










,

where M0,j and Σj are the result of factorising the Jacobian matrix correspond-
ing to region j. The final factored modular tracking algorithm is shown in
Algorithm 1.

Algorithm 1 Factored modular tracking.

Off-line:
for all region j do

Compute and store M0,j using Bj.
Compute and store ΛM2,j = M

⊤
0,jNBj

.
Compute and store ΛM1,j = ΛM2,jM0,j.
Compute and store ΛB,j = (B⊤j Bj)

−1
B
⊤
j .

end for
On-line (one iteration):

for all regions j do
Warp Ij(·, t + δt) to Ij(f(·,µt), t + δt).
Compute Ej =Ij(f(x,µt), t + δt) − Ij(0) − Bjcj,t.
Compute Σj(µt, cj,t).
Compute Hj = Σ(µt, cj,t)

⊤
ΛM1,jΣ(µt, cj,t).

Compute Aj = Σ(µt, cj,t)
⊤
ΛM2,jEj.

end for
Compute H =

∑r
j=1 Hj.

Compute A =
∑r

j=1 Aj.
Compute δµ = −H

−1
A.

Update µt+δt = µt + δµ.
for all region j do

Compute δcj,t+δt = ΛB,j[M0,jΣ(µt, cj,t)δµ + Ej].
Update cj,t+δt = cj,t + δcj,t+δt.

end for

5 Model training

One of the advantages of the appearance model introduced in section 2 is
that deformation and illumination subspaces are decoupled. This way, they
can be trained independently. This simplifies the training process. We do not
need image sequences with all facial expressions under all possible illumination
conditions. Now, each subspace is trained with one video sequence. For the
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illumination subspace we use a sequence in which a face is subject to the illumi-
nation conditions in which the system is to operate. In our experiments these
conditions were generated by orbiting a light in front of the target face. For
the deformation subspace we use a sequence captured with a non-saturating
frontal illumination in which the target face adopts different facial expres-
sions. The face is located and aligned in the first frame of both sequences,
then, with a procedure similar to the one described in [19], both sequences are
independently tracked to extract the sample images of both subspaces (see
Fig. 5).

Fig. 5. Some images used to build the deformation (top row) and illumination
(bottom row) subspaces.

Once we have aligned the sample images in both sequences, the basis of each
subspace, Bi and Bd, are independently built using PCA. Here we assume I(·, 0)
to be the mean of the illumination and deformation samples.

This initial model estimation would be correct if the illumination in the se-
quence used for training the deformation basis was such that ci = 0 and the
facial expression in the sequence used for training the illumination was such
that cd = 0. But this is not the case, since the facial expression in the illumina-
tion sequence and the illumination in the deformation sequence are arbitrary.
Therefore, this initial estimate must be refined.

We iterativelly improve this initial estimate by computing the illumination
parameters in each sample image of the deformation sequence and subtracting
the illumination component. Following a similar procedure we subtract the
facial expression component from the samples of the illumination sequence.
We then re-estimate the basis of the subspaces using the corrected samples.
This process may be repeated again and converges in a few iterations to a
definitive appearance model. This training procedure is shown in Algorithm 2,
where Ei and Ed are matrices storing the aligned samples from the illumination
and deformation training sequences respectively.

To validate our model we did the following experiment. First we trained the
model according to the procedure described above. Then we manually selected
the parameters of two facial expressions and two illuminations, and generated
a set of intermediate illuminations and expressions by uniformly sampling the
parameter space between those locations. We have repeated this process three
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Algorithm 2 Appearance model training.
Input: Ei, Ed

Result: I(·, 0), Bi, Bd

I(·, 0)=mean(Ei, Ed);
Bi = PCA(Ei, I(·, 0));
while Appearance basis changed do
{Illumination parameters for deformation samples}
C

d
i = (B⊤i Bi)

−1
B
⊤
i ∗ (Ed − I(·, 0));

{Remove ilumination from deformation samples}
Êd = Ed − Bi ∗ C

d
i ;

{PCA from the corrected deformation samples};
Bd = PCA(Êd, I(·, 0));

{Deformation parameters for illumination samples}
C

i
d = (B⊤d Bd)

−1
B
⊤
d ∗ (Ei − I(·, 0));

{Remove deformation from illumination samples}
Êi = Ei − Bd ∗ C

i
d;

{PCA from the corrected illumination samples}
Bi = PCA(Êi, I(·, 0));

end while

times. The results are shown in Fig. 6. In spite of the model’s linearity, it
correctly generates the appearance of the faces.

(a) (b) (c)

Fig. 6. Images generated using our appearance model; (a) from left to right images
generated by falling eyebrows, and from top to down images generated by varying
illumination; (b) idem, rolling eyes with a different illumination; (c) idem, closing
the mouth using a different illumination from the previous ones.

23



6 Experiments

Here we evaluate the model and the minimisation procedure introduced in
this paper. We have divided our experiments into three groups which are de-
scribed in different sections. Section 6.1 evaluates the appearance-based model
introduced in section 2. Section 6.2 compares the minimisation algorithm in-
troduced in section 3.5 with the other minimisation procedures described in
section 3. Section 6.3 evaluates the performance of the whole system in terms
of speed, relating model size to the number of frames per second (FPS).

We will use a RTS rigid motion model in all the experiments. The modular
eigenspace used for all experiments is composed of three modules chosen to in-
clude only pixels in the target face (no background pixels) (see e.g. Fig.11(b)).
The first subspace is attached to the mouth and each of the other two includes
one eye and its eyebrow. The behaviour of both eyes in the experiments con-
ducted in this section is essentially the same. Therefore, we will only display
plots of the mouth and one of the eyes in order to avoid redundancy.

We use the same appearance model in all experiments described in this section.
We have acquired two image sequences to train the deformation and illumina-
tion subspaces according to the procedure described in section 5. They were
captured with a Basler A312fc camera with no automatic white balance. Fig. 5
shows some frames from these sequences. The illumination subspaces result-
ing from the training process have dimension 5 for both the mouth (23 × 23
pixels) and eye regions (15 × 18 pixels), whereas the deformation subspaces
have dimension 18 for the mouth and 9 for each eye region. With this model
our tracker runs at 40 fps (including the time it takes to read images from disk
and display the results on screen) with an unoptimised C++ implementation
on a Pentium-M Sonoma 1.83GHz with 2 MBytes cache memory. All images
are full colour and have been conveniently converted to grey values.

6.1 Appearance model evaluation

Here we test the appearance-based model introduced in section 2. Our first goal
is to assess the global behaviour of the system when tracking a real sequence
in a challenging situation. To do this we acquire a test image sequence in a
different location and with different illumination conditions from the training
sequence. This time we use a low-cost Apple iSight camera with automatic
white balance. We modify the illumination conditions by moving a flashlight
in front of the face. In this sequence fluorescent ceiling lights were on (note
that during model training there were no ceiling lights). In Fig. 7 we show the
tracking results for a sequence in which the face is in rigid and non-rigid motion
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with drastic illumination changes that produce various cast shadows. The
estimated position of the face is overlayed in red (a rectangle for each module
tracked). To the right of each resulting image we show four smaller images: the
rectified images of the three regions used in tracking (I(f(·,µt + δµ), t + τ))
(top left), the reconstructed images (Ij(·, 0) + Bi,jci,j,t + Bd,jcd,t,j) (top right),
the illumination reconstructed images (Ij(·, 0) + Bi,jci,j,t) (bottom left) and
the deformation reconstructed images (Ij(·, 0)+ Bd,jcd,j,t) (bottom right). The
tracker is locked on the face through all the 966 frames of the experiment.

#050 #100 #150

#211 #300 #350

#400 #450 #539

#600 #650 #700

#762 #800 #850

Fig. 7. Real tracking experiment.

The rectified images give us an idea of how robust the tracker is to the changes
in the appearance throughout the sequence. Performance is almost perfect in
terms of robustness. The images reconstructed with the illumination and de-
formation models inform us about how well each source of appearance is sep-
arated during tracking. Here again performance is remarkable, given that the
illumination subspace accurately estimates the changes in the illumination of
the scene and the deformation subspace represents the facial expressions. Oc-
casionally, the images reconstructed with the deformation model show “ghost”
expressions. These are caused by facial expressions not present in the training
sequence. Consequently, the generalisation properties of the model are limited
since we are using a linear subspace to approximate the manifold of facial ex-
pressions, which is actually non-linear. Finally, the image reconstructed with
both models gives us information about how well our model reconstructs the
target image. Here, again, the reconstruction is good, except for those expres-
sions not present in the training sequence.
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The next experiment examines the contribution of each subspace in the model
to the tracking process. To do this we have used two new trackers to process
the image sequence in Fig. 7 using an appearance model including only the
illumination (TI tracker) and only the deformation subspace (TD tracker) in
each one. The full tracker is denoted by TIE (tracker with illumination and
expression subspaces). Fig. 8 shows some sample images from the tracking pro-
cess and Fig. 9 illustrates the RMS error. The tracker using deformation and
illumination subspaces (TIE) performs consistently better than the trackers
including only illumination (TI) or deformations (TE). Since the appearance
changes caused by facial expressions are less significant than those due to il-
lumination, the performance of the TE tracker is much worse than the others,
and eventually it loses track. Although the illumination subspace alone can
successfully track the sequence, it cannot explain all the appearance varia-
tions. That is why its residual is higher than the one obtained with the whole
appearance model (TIE). Most of the appearance variation in a sequence is
caused by changes in illumination. This is why the tracker using only the illu-
mination subspace does not lose track. Nevertheless, the deformation subspace
is necessary, since it makes the RMS residual smaller, and, most importantly,
it is the subspace that captures the facial expression information.

6.2 Model fitting algorithm evaluation

Here we compare the performance of the minimisation algorithm OUA in-
troduced in section 3.5 of this paper with the other minimisation procedures
described in section 3. We have performed static and dynamic tests. In the
static tests we used a small set of carefully chosen real images and evalu-
ated algorithm convergence to these target images. In the dynamic tests we
used test image sequences with challenging imaging situations on which we
evaluated algorithm performance.

For the static tests we used the four images shown in Fig. 10. They depict dif-
ferent imaging situations of increasing complexity: neutral illumination with
no facial expression (CTRI1), lateral illumination with neutral facial expres-
sion (CTRI2), frontal illumination with strong facial expression (CTRI3) and
strong lateral illumination with facial expression (CTRI4). We wanted to com-
pare the convergence of the five subspace-based minimisation algorithms de-
scribed in section 3 (COC, MBC, APC, HBA and OUA) to each of the test
images. We randomly selected a starting point in the space of rigid transforma-
tions and rectified the resulting piece of image texture. Then, we set the initial
appearance parameters to those obtained by projecting this texture onto the
appearance subspace. Finally, we used all five subspace-based minimisation
algorithms to fit the model to the four static test images. Fig. 11 shows a
sample starting point and the result of the fitting process for the CTRI1 test
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#050 #100 #115

#135 #211 #350

#539 #650 #762

(a) Tracking with a deformation appearance model (without illumination)

#050 #100 #115

#135 #211 #350

#539 #762 #800

(b) Tracking with illumination appearance model (without deformations)

Fig. 8. Contribution of each appearance subspace to the tracking process.
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Fig. 9. Error obtained when tracking a real sequence with and without each model
subspace.

image. We repeated this experiment for different initial starting points con-
taminated with increasing noise levels (the process is repeated 1000 times per
noise level). Figs. 12 to 15 show the results of the convergence rate (top left),
final RMS residual (top right), number of iterations per frame (bottom left)
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(a) Image CTRI1 (b) Image CTRI2

(c) Image CTRI3 (d) Image CTRI4

Fig. 10. Images used in static convergence experiments.

and number of milliseconds per frame (bottom right) for each target image
and noise level.

(a) Initial parameters (b) Final parameters

Fig. 11. An example of static convergence test.

The convergence rate is the percentage of tests in which a minimisation algo-
rithm has converged to the solution. We say that a test has converged if the
RMS error of the corner locations of the tracker modules is below 7 pixels from
a manually selected ground truth solution 2 . As the complexity of the imaging
scenario and as the noise contaminating the initial starting point increase, the
convergence rate of all five algorithms decreases. Imaging situations in which
the appearance is least like the one used during training (e.g. strong lateral il-
luminations, like those in images CTRI2 and CTRI4) are the most challenging.
In these situations the convergence rate of the “correct” algorithms (OUA and
COC) is notably higher than those involving approximations (MBC, APC and
HBA). Of these, the additive algorithm HBA behaves slightly better than the
compositional algorithms, MBC and APC. When the illumination is neutral
(CTRI1) or frontal (CTRI3) all algorithms have closer results, which get worse
when the facial expression is strong (CTRI3). Nevertheless, correct algorithms
(OUA and COC) are consistently better in these cases than algorithms involv-

2 We are assuming that the error made when manually aligning the model to the
image is smaller than 7 pixels.
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Fig. 12. Static convergence results for the CTRI1 image
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Fig. 13. Static convergence results for the CTRI2 image

ing approximations, of the latter, the additive HBA still has an advantage over
the compositional algorithms, MBC and APC.

If we average E , the RMS residual, of those tests in which all five algorithms
converge, we obtain the final RMS residual (Figs. 12 to 15, top right). As the
appearance of the target image becomes less like the neutral situation (image
CTRI1), the final RMS residual increases. That is why images CTRI3 and
CTRI4 have the highest residuals. Nevertheless, for all test images, correct
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Fig. 14. Static convergence results for the CTRI3 image
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Fig. 15. Static convergence results for the CTRI4 image

algorithms (OUA and COC) have a smaller residual than algorithms involv-
ing approximations. The residual difference between correct and approximate
algorithms is the highest for image CTRI4. This is the image in which the
change in illumination is the strongest.

The number of iterations per processed frame (Figs. 12 to 15, bottom left) is
obtained by averaging the number of iterations needed to converge to a solu-
tion for each noise level, only among those tests for which all five algorithms
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converge. Here HBA consistently takes the fewest and COC the highest itera-
tions to converge. But, since the computational cost of each iteration is differ-
ent for all five algorithms, the actual plot to be used to compare performance is
the plot displaying the average time used to process one frame (Figs. 12 to 15
bottom right), computed from the timings of all tests in which all algorithms
converge 3 . In this case the algorithms involving approximations (MBC, APC
and HBA) perform best, and there is no significant difference among them.
COC is by far the slowest, since it has to recompute the Jacobian for each
frame. Finally, the OUA algorithm introduced in this paper is slower than the
algorithms involving approximations, but notably faster than COC.

Although at first glance the additive algorithm HBA would appear to be
slower than the compositional algorithms (MBC and APC), because part of
the Jacobian must be recomputed in each frame, the final outcome is that
it is as fast as the algorithms with a full precomputed Jacobian because it
converges faster (with fewer iterations) to a solution.

Finally, we use two real image sequences in the dynamic convergence tests.
In these sequences the target face is subject to strong illumination variations,
while it adopts different facial expressions. The first test sequence was cap-
tured with a Basler A312fc camera with no automatic white balance. This
sequence is different from the one used for training, but was captured with
the same camera and in similar illumination conditions. The second sequence
was captured with an Apple iSight camera with illumination conditions differ-
ent from those of the training sequence. Figs. 16 and 17 show sample images
and RMS residual plots of the first sequence respectively. This sequence shows
a talking head in a dark environment. During the sequence, the illumination
is varied by moving a tungsten flashlight in front of the head while it moves,
talks and performs several facial expressions. Approximate algorithms (MBC
and HBA) have a higher residual than correct algorithms and eventually lose
track at frame 125, because of a strong lateral illumination of the face. Figs. 18
and 19 show sample images and RMS residual plots of the second sequence.
In this sequence we again have a talking head in an environment illuminated
by fluorescent ceiling lights. During the sequence, the head performs various
rotations in the camera plane, movements and small out of camera plane rota-
tions. At frame 36 the HBC algorithm loses track, possibly because of motion
blur caused by rigid head motion. At frame 107 a tungsten flashlight starts
orbiting in front of the head. From this point onwards the RMS of HBA no-
tably increases, and it loses track at frame 320 in which an upward motion of
the head coincides with a facial expression and a strong illumination. In both
tests, correct algorithms (COC and OUA) correctly track the face during all
the sequence, in spite of the strong illumination changes and the induced cast
shadows. In terms of RMS, both achieve the lowest values and their perfor-

3 These timings were obtained using a non-optimised Matlab implementation
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mance is identical. In this experiment we chose not to show the results for
the APC algorithm because, as happened in the static tests, the results are
exactly the same as for MBC.

#065 #125 #336

#404 #500 #687

(a) Tracking with OUA

#065 #125 #336

#404 #500 #687

(b) Tracking with MBC

#065 #125 #336

#404 #500 #687

(c) Tracking with HBA

#065 #125 #336

#404 #500 #687

(d) Tracking with COC

Fig. 16. Sample images comparing minimisation algorithms with the first test image
sequence.
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Fig. 17. RMS residual comparison for the first test image sequence.

6.3 Performance evaluation

In this section we evaluate the performance of our tracker in a real sequence
with models of different size and on various personal computers. Best perfor-
mances are obtained when all data structures used in the algorithm fit the
processor’s cache memory. As shown in Fig. 20, performance quickly degrades
as the model size increases. Model size is the number of pixels per region times
the number of basis per region times the number of regions. We have tested
our algorithm on an Athlon XP 2500+ with 512 Kbytes Cache (AXP 2005),
Pentium 4 2.4 GHz with 512 Kbytes Cache (P4 2.4), Pentium 4 3.2 GHz with
1 MByte Cache (P4 3.2) and on a Pentium-M Sonoma 1.86 GHz with 2 MByte
(PM 1.85).

7 Conclusions

In this paper we have experimentally shown that a linear model, based on a
first order approximation to the appearance of a deforming face under varying
illumination, provides enough information to efficiently track a human face
when there are strong facial expression and illumination changes. In such a
model both sources of variation are approximately independent and one can be
trained almost independently of the other. The most remarkable consequence
of this property is the considerable reduction in the number and complexity of
the set of images used for estimating the parameters of the model. Contrary
to previous bilinear and multilinear approaches we now do not need training
samples with all facial expressions under all possible illumination conditions.
Instead we only require two sets of sample images, one in which one facial
expression is subject to all possible illuminations and another set in which
the face, under one illumination, adopts all facial expressions. This result is
important for the development of simple and efficient face trackers, which have
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#318 #539 #762

(a) Tracking with OUA

#036 #115 #135

#318 #539 #762

(b) Tracking with MBC

#036 #115 #135

#318 #539 #762

(c) Tracking with HBA

#036 #115 #135

#318 #539 #762

(d) Tracking with COC

Fig. 18. Sample images comparing minimisation algorithms with the second test
image sequence.

an immediate application in facial expression recognition, performance-based
graphical animation or video-based face recognition systems.

We have also introduced an efficient procedure for fitting linear subspace-based
appearance models. It is an extension of Hager and Belhumeur’s factorisation-
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Fig. 19. RMS residual comparison for the second test image sequence.
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Fig. 20. Tracker performance for different processors and for different model sizes.

based additive approach [3] for a deforming face subject to strong illumination
variations. In our procedure, we make no assumptions about the smoothness
of the linear subspace basis. Although it was introduced in the context of
appearance-based models, it could be used as well in other linear approaches,
such as Active Appearance Models or Morphable Models.

We have also reviewed all previous efficient linear subspace-based fitting pro-
cedures and we have proved that Matthews and Baker’s compositional ap-
proach [34] is based on a smoothness assumption on the linear subspace which
is equivalent to that used in Muñoz at al.’s compositional approach [13], and
to the one used in Hager and Belhumeur’s additive approach [3]. These as-
sumptions were conceived to alleviate the computational cost involved in the
minimisation. That is why approximate methods (HBA, MBC, APC) have the
lowest computational cost in the experiments conducted. This gain, neverthe-
less, comes at the price of an important drop in the convergence rate which is
approximately one fifth of that associated with correct algorithms, like OUA
and COC, for difficult images. The other major drawback of approximate
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methods is that the smoothness assumption biases the minimisation solution.
This bias had been previously reported by Romdhani and Vetter [46], although
it has been properly explained here.

Correct algorithms (COC and OUA) are the best choice if accuracy and con-
vergence rate are the key issues in an image alignment application. If com-
putational cost is also important, then the OUA algorithm introduced in this
paper is the best choice. If, on the other hand, computational cost is the main
concern and we are ready to sacrifice accuracy and convergence rate, then
HBA, Hager and Belhumeur’s algorithm, is the best choice.

There seems to be some consensus across part of the computer vision commu-
nity concerning the superiority of the ICIA algorithm [38,35,34] to Hager and
Belhumeur’s factorisation-based additive approach [3]. Here we have proved
that a correct factorisation-based additive approach, like the one introduced in
this paper, has better convergence properties than ICIA. Moreover, even if it
also involves a smoothness assumption, as is the case of Hager and Belhumeur’s
approach [3], the convergence properties (convergence rate, final RMS error
and number of iterations per frame) are still better than those of ICIA. One
additional argument in [35] against factorisation-based approaches was that
they could not be used with typical motion models, such as homographies.
In section A.3, by deriving the factorisation of a homography-based motion
model for our fitting algorithm, we prove that factorisation-based algorithms
can be used with homographies. A similar result for Hager and Belhumeur’s
basic planar tracking algorithm had been presented in [47].
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A Some Jacobian factorisation examples

Here we will show how the Jacobian matrix factorisation introduced in sec-
tion 3.5.1 applies to some motion models commonly used in computer vision.
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A.1 Rotation, translation and scale model (RTS)

This motion model can be described by four parameters, µ = (tu, tv, θ, s),
corresponding to rotation, translation and scale, f(x,µ) = sR(θ)x + t, where
x = (u, v)⊤, t = (tu, tv)

⊤ and R(θ) is a 2D rotation matrix. Taking derivatives
of f with respect to x and µ,

fx̄(x,µ) = sR(θ), fµ(x,µ) =


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where the Id×d is the d × d identity matrix. Introducing the derivatives in
(A.1) into (26), we get the factorisation:
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where l = k + 1 and k is the dimension of the subspace. For this model M0 has
dimensions N × 4l and Σ, 4l × 4.

A.2 Affine model

The 2D affine motion model can be written as f(x,µ) =


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where A is a nonsingular matrix and µ = (e, f, a, b, c, d)⊤ are the six model
parameters. Taking derivatives of f with respect to x and µ,

fx(x,µ) = A, fµ(x,µ) = [I2×2|uI2×2|vI2×2]. (A.2)

where the Id×d is the d × d identity matrix. From (A.2) and (26), we get the
factorisation we are looking for

Γ(xi) = [ I2k×2k|uiI2k×2k|viI2k×2k ] , Σ =
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where M0 has dimensions N × 6k and Σ 6k × 6.

A.3 Projective model

A sufficient condition for factoring the Jacobian M(µ, c) in (27) is that f be
linear. Here we choose to work with homogeneous coordinates to assure a
linear warping function. Let x = (u, v)⊤ and x̃ = (r, s, λ)⊤ be the Cartesian
and Projective coordinates of an image pixel respectively. They are related by
a projection function x = p(x̃) : P2 −→ ℜ2 such that:

x̃ =
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In this case, the brightness constancy constraint (1) takes the form

I(p(f(x̃,µt)), t) = I(p(x̃), 0) + [Bct](p(x̃)) ∀x̃ ∈ F . (A.3)

The warping function that describes the motion of a planar region is a 2D
homography

f(x̃,µ) = Hx̃ =
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where µ = (a, b, c, d, e, f, g, h)⊤. Now, B∇(x̃i) has an extra set of columns
associated with the gradient of the homogeneous coordinate,
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and matrix C is
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The derivatives of f w.r.t x̃ and µ are
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where 0p×q is a p× q matrix with all elements equal to zero. The derivative of
the image grey values w.r.t. the homogeneous coordinates are
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∣
∣
∣
∣
∣
x=p(x̃)





⊤ [

∂p(x̃)

∂x̃

]

.

Since

∂p(x̃)

∂x̃
=






1
λ

0 − r
λ2

0 1
λ
− s

λ2




 ,

and given that the coordinates x̃ in the brightness constancy equation (A.3)
are defined on a finite image patch, we can safely assume that λ = 1. Then

∇x̃I(p(x̃)) =

[

∂I(x)

∂u
,
∂I(x)

∂v
,−r

∂I(x)

∂u
− s

∂I(x)

∂v

]⊤

.

Then, M is factored from (A.5), (A.6), (A.7) and (26) as follows:

Γ(xi) = [ riI3l×3l|siI3l×3l|λiI3l×3l ] , Σ =









C
P
H
−1

Z Z

Z C
P
H
−1

Z

Z Z C
P
H
−1
1−2









,

where H
−1
1−2 is the matriz composed of the first two columns of H−1 and again

l = k + 1. Now the dimensions of M0 and Σ are N × 9l and 9l× 8 respectively.
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[13] E. Muñoz, J. M. Buenaposada, L. Baumela, Efficient model-based 3d tracking of
deformable objects, in: Proc. of International Conference on Computer Vision,
Vol. I, Beijing, China, 2005, pp. 877–882.

40



[14] F. Dornaika, J. Ahlberg, Fast and reliable active appearance model search for
3d face tracking, Trans. on SMC-B 34 (4) (2004) 1838–1853.

[15] T. Cootes, G. Edwards, C. Taylor, Active appearance models, in: Proc.
European Conference on Computer Vision, Vol. LNCS 1047, Springer-Verlag,
1998, pp. 484–498.

[16] D. DeCarlo, D. Metaxas, Optical flow constraints on deformable models with
applications to face tracking, International Journal of Computer Vision 38 (2)
(2000) 99–127.

[17] V. Blanz, T. Vetter, Face recognition based on fitting a 3d morphable model,
IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (9) (2003)
1–12.

[18] S. Baker, I. Matthews, J. Schneider, Automatic construction of active
appearance models as an image coding problem, IEEE Transactions on Pattern
Analysis and Machine Intelligence 26 (10) (2004) 1380–1384.

[19] J. Lim, D. A. Ross, R.-S. Lin, M.-H. Yang, Incremental learning for visual
tracking, in: L. K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural
Information Processing Systems, Vol. 17, MIT Press, Cambridge, MA, 2005,
pp. 793–800.

[20] D. Ross, J. Lim, M.-H. Yang, Adaptive probabilistic visual tracking with
incremental subspace update, in: Proc. European Conference on Computer
Vision, Vol. LNCS 3022, Springer-Verlag, 2004, pp. 470–482.

[21] K. Toyama, A. Blake, Probabilistic tracking with exemplars on a metric space,
International Journal of Computer Vision 48 (1) (2002) 9–19.

[22] H. Fei, I. Reid, Joint bayes filter: A hybrid tracker for non-rigid hand motion
recognition, in: Proc. European Conference on Computer Vision, Vol. 3023 of
LNCS, 2004, pp. 497–508.

[23] A. Elgammal, R. Duraiswami, L. S. Davis, Probabilistic tracking in joint
feature-spacial spaces, in: Proc. of CVPR, Vol. I, 2003, pp. 781–788.

[24] O. Williams, A. Blake, R. Cipolla, A sparse probabilistic learning algorithm for
real-time tracking, in: Proc. of International Conference on Computer Vision,
Vol. I, 2003, pp. 353–360.

[25] R. Basri, D. W. Jacobs, Lambertian reflectance and linear subspaces, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2) (2003) 218–
233.

[26] A. S. Georghiades, P. N. Belhumeur, D. J. Kriegman, From few to many:
Illumination cone models for face recognition under variable lighting and pose,
IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (6) (2001)
643–660.

[27] A. Shashua, T. Riklin-Raviv, The quotient image: Class-based re-rendering and
recognition with varying illuminations, IEEE Transactions on Pattern Analysis
and Machine Intelligence 23 (2) (2001) 129–139.

41



[28] J. B. Tenenbaum, W. T. Freeman, Separating style and content with bilinear
models, Neural Computation 12 (2000) 1247–1283.

[29] D. Grimes, A. Shon, R. Rao, Probabilistic bilinear models for appearance-based
vision, in: Proc. of International Conference on Computer Vision, Vol. II, 2003,
pp. 1478–1485.

[30] M. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles:
Tensorfaces, in: Proc. European Conference on Computer Vision, Vol. LNCS
2350, Springer-Verlag, 2002, pp. 447–460.

[31] A. Elgammal, C.-S. Lee, Separating style and content on a non-linear manifold,
in: Proc. of CVPR, Vol. I, 2004, pp. 478–485.

[32] M. A. O. Valilescu, D. Terzopoulos, Multilinear independent component
analysis, in: Proc. of CVPR, Vol. I, 2005, pp. 547–553.

[33] M. J. Black, A. D. Jepson, Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation, International Journal of
Computer Vision 26 (1) (1998) 63–84.

[34] I. Matthews, S. Baker, Active appearance models revisited, International
Journal of Computer Vision 60 (2) (2004) 135–164.

[35] S. Baker, I. Matthews, Lucas-kanade 20 years on: A unifiying framework,
International Journal of Computer Vision 56 (3) (2004) 221–255.

[36] Z. Khan, T. Balch, F. Dellaert, A rao-blackwellized particle filter for
eigentracking, in: Proc. of CVPR, Vol. II, 2004, pp. 980–986.

[37] K. Murphy, S. Russel, Rao-blackwelised particle filtering for dynamic bayesian
networks, in: A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte
Carlo methods in practice, Springer-Verlag, 2001, pp. 499–515.

[38] S. Baker, I. Matthews, Equivalence and efficiency of image alignment
algorithms, in: Proc. of CVPR, Vol. 1, IEEE, 2001, pp. 1090–1097.

[39] R. Gross, I. Matthews, S. Baker, Active appearance models with occlusion,
Image and Vision Computing 24 (6) (2006) 593–604.
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