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Abstract— Line extraction is a preliminary step in various
visual robotic tasks performed in low textured scenes such as
city and indoor settings. Several efficient line segment detection
algorithms such as LSD and EDLines have recently emerged.
However, the state of the art segment grouping methods are
not robust enough or not amenable for detecting lines in real-
time. In this paper we present FSG, a fast and robust line
detection algorithm. It is based on two independent components.
A proposer that greedily cluster segments suggesting plausible
line candidates and a probabilistic model that decides if a group
of segments is an actual line. In the experiments we show that
our procedure is more robust and faster than the best methods
in the literature and achieves state-of-the art performance in
a high level robot localization task such as vanishing points
detection.

I. INTRODUCTION

It is well known that state of the art geometric computer
vision algorithms fail dramatically in low textured scenes.
However, in some settings, like for example in man-made
environments, aligned structures such as windows, balconies
and doors abound. These structures produce short and dis-
connected line segment that computer vision algorithms
may leverage on to obtain geometric information used for
solving fundamental robotic problems such as Simultaneous
Localization and Mapping (SLAM) and Vanishing Points
(VPs) Detection.

There is a growing interest in using points and lines in
Visual Odometry (VO) [5], [9], [13], [16], [26], [27] and
SLAM [20], [30]. Some of these algorithms [5], [10], [16],
[20] work directly with segments detected with LSD [23]
or EDLines [1] and match them using the Line Band De-
scriptors (LBD) [29] or the Mean–Standard deviation Line
Descriptor (MSLD) [24]. Other algorithms try to match
full lines by performing segment grouping as a preliminary
step [26], [30] with heuristics mainly aimed at achieving a
very fast execution.

The input to many VPs estimation algorithms are line seg-
ments [12], [14], [25], [28]. Although some of them directly
use these segments [18], most of them have a preliminary
segment grouping step [12], [14], [25], [28]. State-of-the-art
VP estimation algorithms are very slow. Kulger et al. [12]
takes 45 seconds to process a single image and Lezama et
al. [14] takes around 30 seconds. Another state-of-the-art
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Fig. 1: Problem statement: Detected line segments are not
usually collinear. Left: Line segments detected in an image
using LSD (magenta lines). Right: Detected segments are
not strictly aligned with straight scene lines (green lines). The
smallest bounding box containing the segments of a scene
line is plotted in yellow.

method, Zhai et al. [28], takes 1 second but requires a GPU.
Computing with a GPU could be a problem in battery limited
devices such as smartphones or drones.

Recently some developments in SLAM aim to use si-
multaneously heterogeneous features with different level of
complexity: points, lines, planes and VPs. Lu et al. [17] use
LSD segments to detect VPs and also to detect full lines
with RANSAC. Camposeco et al. [6] use also VPs in VO
being the inputs the LSD segments and the measurements
from an IMU. They remove some steps in LSD to achieve
faster execution.

Large and well connected groups of segments produce
accurate line estimations that computer vision may leverage
on to solve geometric problems in low textured contexts.
As far as we know there is no line estimation algorithm
that is both fast and robust. In this paper we propose the
Fast Segment Grouping (FSG) algorithm that satisfies both
requirements. The contributions of our paper are:

1) A very efficient greedy procedure for generating can-
didate lines from groups of image segments.

2) A probabilistic test to check if a group of segments is
an actual line.

3) A segment grouping benchmark built on the York
Urban Data-set. We use LSD [23] for segment detec-
tion and manually mark segments that belong to full
lines. This database is used in our experiments and
it is publicly available at https://github.com/
graffter/fsg-benchmark.

II. PREVIOUS WORK

Classic methods for line segment detection first apply a
Canny edge detector [7] followed by a Hough transform
[3] or its probabilistic and efficient variant [19]. Recently

https://github.com/graffter/fsg-benchmark
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LSD [23] and EDLines [1] use local approaches for link-
ing the edge pixels generating isolated segments in a fast
and accurate way. However, LSD and EDLines, being lo-
cal aproaches, extract short segments. A recent approach,
MCMLSD [2], finds longer segments by combining the
advantages of global probabilistic Hough methods for line
detection with spatial analysis in the image domain.

On the other hand, tasks as VP estimation and VO will
benefit from the detection of full lines. So, we address the
problem by extracting short segments with LSD or EDLines,
that are further grouped into full lines. In this section we
review the most prominent algorithms for line segment
grouping. We organize them into heuristic, clustering, prob-
abilistic, and geometric-based methods.

One of the first fast heuristic methods, Jang et al. [11],
uses a line segment voting scheme. Segments are assigned to
different candidate lines and, using some heuristics, the most
likely lines are returned with their associated segments. Zuo
et al. [30] group two segments if some distances from their
middle and end points are small. Yang et al. [26] organize the
candidates into buckets with similar middle point locations
and orientations. They merge segments whose angles and
distance are below a threshold.

Clustering-based methods for segment grouping usually
work in the line parameter space such as the Hough trans-
form. The work of Bandera et al. [4] starts with a Canny
edge detection followed by a Randomized Hough Transform
for detecting segments. The segments are clustered using the
Variable Bandwidth Mean Shift algorithm in the space of line
parameters.

The most prominent approaches based on probabilistic
models use the a contrario methodology [15] to validate a
hypothesis based on the expected number of false detections
or false alarms. Rajaei et al. [21], [22] propose an approach
to detect "non-local alignments." Lezama et al. [14] use
segment end points within an a contrario point alignment
detector. While this criteria can be valid, they propose
candidates by brute force, checking all the possible point
pairs in [14] or with an adjacency matrix in [22], both
approaches are computationally demanding and, hence, not
adequate for real-time settings.

III. FAST SEGMENTS GROUPING (FSG)

Our line detection algorithm takes as its starting point
the segments detected in an image. It is based on (1) a
probabilistic criteria to accept a group of segments as a line,
and (2) a greedy algorithm that proposes clusters of segments
as line hypotheses. In this section we present both elements.

A. Probabilistic Segments Group Validation

Let S be the set of segments detected in an image of n×m
pixels and H a set of s segments randomly distributed in the
same image. Let Cs be a group of c segments from S and B
the smallest bounding box that encloses all segments in Cs.

Let EH(S, Cs) be the expected number of boxes of size
equal or smaller than B that enclose c segments of the same
length as those in Cs in H. We accept the group of segments
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Fig. 2: Probability that a random segment falls in the
Box: Statistical method to calculate the probability that the
segments in Ch are bounded by B ( P [Ch ∈ B] ).

Cs as a line if EH(S, Cs) is below a certain threshold, ε. The
intuition behind this criterion is simple. If the segments in
Cs are well aligned then B will be very thin and the chances
that a set of c segments from H fall into B will be very
small.

We assume that the segment’s endpoints position in H fol-
low a uniform distribution, U(n,m). Under this assumption,

EH(S, Cs) =

(
s

c

)
P [Ch ∈ B], (1)

where Ch is a set of segments in H with the same cardinality
and lengths as those in Cs and P [Ch ∈ B] is the probability
that the segments in Ch are bounded by B. This probability
is given by:

P [Ch ∈ B] =

s∏
i=0

P [b(si)] · P [e(si)|b(si), l(si)], (2)

where si is the i-th segment in Ch, b(si) and e(si) are,
respectively, the beginning and ending points of segment si,
P [b(si)] = w·l

n·m is the probability of the first point of segment
si falling into a box B of size w× l and P [e(si)|b(si), l(si)]
is the probability of e(si) falling into B given that b(si) is
already in B and segment si has length l(si). For simplicity,
if we assume that B has infinite length, then

P [e(si)|b(si), l(si)] =
θ̄i
π
,

where θ̄i is the average angle of a sector within B with radius
l(si) and subtended by B (see Fig. 2).

Finally, θ̄i is given by

θ̄i =
1

w/2

∫ w/2

0

(g1(x) + g2(x))dx, (3)

where (see Fig. 2)

g1(x) = arcsin

(
min

(
1,
w/2 + x

l(si)

))



and
g2(x) = arcsin

(
min

(
1,
w/2− x
l(si)

))
.

Hence, we accept as a good line the set of segments Cs
such that EH(S, Cs) < ε. The acceptance threshold ε may
be established by cross-validation.

Once we have this criterion, we could find the lines in an
image by just enumerating all possible groups of segments
Cs and accept as lines the non-overlapping set of groups with
smallest EH(S, Cs). However, this would be computationally
very demanding, preventing our approach from being used
in real robotics applications. To speed this process, in the
following section we introduce an efficient group proposer.

B. Segments Groups Proposer

The proposer is based on the fact that line segment
detectors [1], [23] produce segments with some error in the
location of endpoints caused by glitters, shadows, occlusions,
etc. Our algorithm starts with the endpoints of the longest
segments (the most stable ones) and greedily tries to enlarge
the group by including new segments that fall inside a cone
defined by the uncertainty in the location of the group end
points (See Fig. 3). For improving the efficiency candidate
segments are organized by length and orientation (see algo-
rithm 1).

The input to the algorithm is a set of segments, S, with
|S| = n. The first step is to build a partially ordered list, L,
of the segments in S by length. The second step is to build
a histogram of segment orientations Pθ. Both of these steps
have complexity O(n). Next, the greedy procedure begins
traversing L from longest to shortest segment:

1) For each si ∈ L, if it is not already in a group, using
Pθ find the set of similar orientation segments, N .

2) Initialize a new candidate group of segments with only
one segment, Cs = {si}.

3) We define a circle of uncertainty on each of the
endpoints of group Cs that delineate a cone where
candidates must lie (see purple lines in Fig. 3). This
cone is defined by two lines l1 and l2 calculated with
the function computeTangentLines(Cs) (see line 11 in
algorithm 1).

4) Each segment, sk, in N is checked in turn as a
candidate to be added to Cs. First of all a fast test
is performed over the middle point of sk, m(sk) to
check if the segment is in the cone (D1[j] and D2[j]
have the same sign in line 17 of algorithm 1). Then we
use the probabilistic test EH(S, (Cs+{sk}) to include
it in Cs.

5) Go to step 1) to process the next segment in L.
The partial ordering of segments, the histogram of ori-

entations and the fast cone-shaped region check are the
cornerstones of the greedy algorithm. In the experiments we
show that it is both fast and accurate.

IV. EXPERIMENTS

We evaluate the proposed FSG approach by using quanti-
tative comparisons to the state of the art. We accordingly

Fig. 3: Segments groups proposer: Greedy process of
segments proposing based on the endpoint error circles.
Purple lines l1 and l2 define the cone-shaped search region,
red segments are discarded by orientation, orange are dis-
carded because being out of the search region, blues are the
candidates and green are the already selected as part of the
base segment.

introduce a ground truth data-set to specifically evaluate
line segment grouping methods. Also, we provide statistical
validation, and a comparison of FSG with the state of art for
estimating the vanishing points of an image.

Fig. 4: Ground truth data-set for segment grouping: We
annotate the YUD with positive and negative examples of
image segments clusters. Top: Some images from the YUD
with line segments detected using LSD (magenta lines).
Middle: Positive clusters, i.e. image segments that belong
to straight lines in the scene. Bottom: Negative clusters, i.e.
segment groups that are not collinear in the scene. We plot
segments in the same cluster with the same color. Also, we
plot a line using this color between the cluster extrema.

A. Ground truth database generation

To the best of our knowledge, there are no specific data-
sets for evaluating line segments clustering methods. To that
purpose, we augment a well-established data-set, the York
Urban Database (YUD) [8]. It comprises a set of images of
buildings, each with its camera orientation and calibration.



Algorithm 1 Greedy Groups Proposer Pseudo-code
Input: S (LSD Segments), ε
Output: S∗ (the set of segments groups)

1: S∗ = ∅
2: L← semiSortByLength(S)
3: Pθ ← createOrientationHistogram(S)
4: for all si ∈ L do
5: if si ∈ S∗ then Continue end if
6: Cs = {si}
7: N ← getSegmentsInNearestBins(Pθ, si)
8: M ← getMiddlePoints(N )
9: searching = true

10: while searching do
11: l1, l2 ← computeTangentLines(Cs)
12: if lT1 · b(Cs) < 0 6= lT2 · b(Cs) < 0 then l1 = −l1

end if
13: D1 = lT1 ·M ; D2 = lT2 ·M
14: BestSeg = ∅ ; BestSegA = MaxVal
15: Mnew = ∅ ; Nnew = ∅
16: for j = 0 to |N | do
17: if sameSign(D1[j], D2[j]) then
18: Mnew = Mnew +M [j]
19: Nnew = Nnew +N [j]
20: A = EH(S, Cs + {N [j]})
21: if (A < ε) and (A < BestSegA) then
22: BestSegA = A
23: BestSeg = N [j]
24: end if
25: end if
26: end for
27: if BestSeg = ∅ then
28: searching = false
29: else
30: M = Mnew ; N = Nnew
31: Cs = Cs + {BestSeg}
32: Delete BestSeg from M , N and Pθ
33: end if
34: end while
35: S∗ = S∗ + {Cs}
36: end for

It also provides a few lines in each image, to estimate the
Manhattan frame relative to the camera (see [8] for further
details).

In our annotation we cluster segments that belong to
straight structures in the scene into longer, meaningful, lines.
Thus, for each image we detect segments using LSD (actu-
ally, its OpenCV1 implementation, with LSD_REFINE_ADV
enabled). Fig. 4 shows the detected line segments in some
images.

We have developed a C++ application that allows us to
cluster the detected segments into straight lines. To this end
the user picks each segment in an interactive manner, so that

1
https://docs.opencv.org/3.4.1/db/d73classcv_1_1LineSegmentDetector.html

segments belonging to distinctive parts of the scene can be
easily grouped. Fig. 4 shows some sample segment clusters.
We have mainly grouped segments corresponding to long
lines of the scene (e.g., buildings) leaving out non-collinear
detections (e.g. cars, people, or similar items in the scene).

Furthermore, in order to provide a statistical validation of
our method, we also annotate a set of negative examples.
Thus, instead of grouping segments belonging to straight
lines in the scene, we intentionally cluster segments using
the opposite criterion, i.e., manually select segments that are
not strictly collinear. Fig. 4 shows some segments that have
been clustered as negative examples. Some of them do not
even belong to the same structure in the scene.

B. Validation of segment clusters
We approach the validation of a segment cluster as a

classification binary problem where the clustered segments
can be aligned (POSITIVE Label) or not (NEGATIVE
Label). In this experiment our results are compared with
those in [15]. Note that since this method is based on a
point alignment detector, we define that a segment cluster is
labeled POSITIVE if the method returns an alignment and
at least half of the points contained in that alignment come
from some ground truth labeled segment.

We have generated the ROC curve (see Fig. 6) by chang-
ing the rarity threshold of both algorithms. We generate
Lezama’s et al. [15] curve varying ε in the interval [0, 107].
We were not able to evaluate larger values because of the
computational cost. In our method we fix the ε = 1 and vary
the number of segments s in H as rarity threshold.

Fig. 6 shows that our statistical criteria significantly
outperforms Lezama’s et al. [15] a contrario model. The
main reason is that our method considers entire segments
instead of alignments of the segments endpoints. As the
two endpoints of every segment are used independently,
accidental alignments of points can be found in Lezama’s
method (see bottom row in Fig. 5).

In Fig. 5 we show our results compared with Lezama et
al. [15] for segment grouping. Our method works fine in
indoor and outdoor environments robustly detecting all the
meaningful lines in the image. Nevertheless, Lezama et al.
detects some non existent lines and miss other important
ones.

Fig. 5: Top: FSG versus Bottom: Lezama et al. [15]. Com-
parison of the lines generated from the clustered segments.

https://docs.opencv.org/3.4.1/db/d73classcv_1_1LineSegmentDetector.html
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Fig. 6: Line segment cluster classification: ROC curve
where we compare how well our statistical criteria performs
compared to Lezama et al. [15] for the first 10 images labeled
in the York Urban Database.

C. Vanishing Point estimation

We also compare FSG with other line detectors applying
them to a high-level task, such as estimating the VPs of a
scene. To this end we compare our approach using Lezama et
al.’s framework [14] that, to the best of our knowledge, is
the state of the art VPs detector. Lezama’s algorithm consists
of three main steps: 1) detect line segments with LSD; 2)
after some heuristic filtering, feed the a contrario model
with these segments to estimate full lines (i.e. segments
groups); and 3) compute the VPs. In Fig. 7 we show the VPs
estimation results obtained when feeding step 3) in Lezama’s
algorithm with image lines computed with five approaches:

• ground-truth: using annotated ground truth lines;
• Lezama et al. [14]: original approach in [14], including

the heuristic segment filter (LSD + heuristic segment
filter + a contrario decision);

• Lezama et al. (basic): approach in [14], with no
heuristic segment filter (LSD + a contrario decision);

• MCMLSD: segments from the method in [2];
• FSG: segments resulting from our method, (LSD +

FSG).
The ground-truth approach provides our experimentation

with an upper bound on VP estimation. We also include
Lezama et al. (basic) to evaluate the impact of the filtering
heuristics in the results of this approach.

Fig. 7 shows the cumulative histograms of the horizon line
detection error for each approach. The horizon line error is
computed as the Euclidean distance between the extremes
of the estimated and ground-truth horizon line segments,
weighted by the image height. We provide an overall score,
that can be quantitatively compared, by measuring the area
under the curve (AUC) of the cumulative histogram curves.

In terms of the AUC score, all three approaches provide
similar results, very close to the upper bound provided by
the VPs estimated with the ground truth lines. FSG performs

Local Segment
Detectors

Segments Grouping
Algorithms

Global Segment
Detectors

LSD EDLines FSG Lezama et al. PPHT MCMLSD
32 6 6 14961 22 4686

TABLE I: Average execution times for line segment
detection (ms) in the York Urban Dataset.

marginally better than [14]. Meanwhile, MCMLSD also
performs marginally better than FSG, because of its global
approach.

Table I shows the average execution times for various
algorithms measured on an Intel(R) Core(TM) i7-6700HQ
CPU @ 2.60GHz with 16 GB of RAM. The fastest algorithm
in the global segment detector group is PPHT, the OpenCV
Probabilistic Hough Line Transform [19] with a Canny edge
detector [7]. However it has some important drawbacks
(see [23]). The alternative, MCMLSD [2] is very accurate,
however, its computational cost prevents it from being used
in a real-time robotic system.

Similarly, if we analyze the segment grouping algorithms,
the computational cost of Lezama et al. [14] is so high, that
it cannot be used in real-time, no matter what local segment
detector is used. The computational cost of FSG is three
orders of magnitude smaller than its competitor. The fastest
configuration, EDLines [1] + FSG, could be used to extract
image lines at 83 frames per second, in the computer that
we used for our experiments.

Finally, from the results in Fig. 7 and Table I, we can
conclude that LSD + FSG has an accuracy comparable to
the state of the art, but with an execution speed three orders
of magnitude faster.

V. CONCLUSIONS

In this work we present FSG, an accurate real-time line
detection algorithm based on grouping line segments. FSG
offers: 1) a very efficient greedy segment group candidate
proposer, and 2) a statistical validation criteria to accept a
group of segments as a line.

To experimentally evaluate our statistical validation cri-
teria we propose a new data set generated by augmenting
the York Urban Database (YUD) [8] with new line labels.
With this data set we have experimentally proved that our
validation criteria is better than the state-of-the-art 2D a
contrario point alignment algorithm [15].

We have compared the accuracy of VPs estimated with
an LSD segment detector and FSG line extractor with the
best in the literature. The LSD + FSG approach achieved
results comparable to the state-of-the-art techniques in terms
of accuracy in the estimation of the horizon line, but with
an execution speed three orders of magnitude faster.

So, the proposed segment grouping approach, a seemingly
small element in a robotic system, may have a big impact in
the overall performance of higher level robotics task, such
as VO through VPs estimation.
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Fig. 7: Horizon line error: Cumulative histogram plots
between the proposed approach (red) and [14](green). Upper
and lower bounds are provided by using the manually anno-
tated data from YUD (blue) a basic, heuristics-free, version
of [14](black). Each method has been annotated with its AUC
score (see legend).
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