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Abstract corners and the contours of expressive regions (eyes, eye-
lids or mouth) [2, 14]. They can only estimate the mo-
We introduce a procedure to estimate human face hightion of textured regions and, therefore, they provide spars
level animation parameters from a marker-less image se-information about the deformation of the face. Later,
guence in presence of strong illumination changes. We usechanges in identity, facial expressions and illumination
an efficient appearance-based tracker to stabilise face im-were modelled by using linear subspace representations of
ages and estimate illumination variation. This is achieved shape+texture [5, 3]. The main drawback of shape-+texture
by using an appearance model composed by two indepenapproaches is that they have complex training procedures
dent linear subspaces modelling face deformation and illu- which often require manual intervention [4, 1, 7]. The third
mination changes respectively. The system is very simple t@approach is based on using linear subspace representations
train and is able to re-animate a 3D face model in real-time. of facial appearance. These representations are gainpig po
ularity, since there are various procedures for automnigtica
learning linear [6, 9] and non-linear [10] subspace models
and for probabilistically representing the dynamics of ap-
1. Introduction pearance variation [15, 8]. The major limitation for using
appearance-based techniques for facial animation is the im
possibility of separating some of the sources of appearance

Realistically modelling and animating a human face is L . . . S
y g 9 variation, for example facial deformation from illuminati.

a challenging problem because of the complexity of hu-
man facial anatomy and our natural sensitivity to facial ap- In this paper we present a face re-animation system
pearance. That is why current animation systems requirebased on an efficient appearance-based tracker, which can
extensive human intervention, being this one of their ma- separate changes in appearance caused by the deformation
jor drawbacks. One solution to this problem comes from of the face from variations in the illumination. In our sys-
the so-calledperformance driven animatioapproach, in  tem, a face is modelled by the addition of two linear sub-
which the performance of a human actor is used to con-spaces, one modelling the deformation of the face (facial
trol the animation of the graphical character. Now, the main expressions) and the second one modelling the illumina-
difficulty is the development of motion capture techniques tion. Both subspaces can be independently and automati-
which can accurately describe the deformation of the ac-cally trained by processing two video sequences of the ac-
tor's face. Here, computer vision has emerged as the mostor, one with fixed illumination and varying facial expres-
promising technology to achieve this goal. sions and another with fixed expression and varying illu-

Various approaches have been used for performancemination. By using this model we will be able to track a
driven facial animation using computer vision. Most sim- human face and re-target the rigid and non-rigid motion of
ple ones use coloured markers painted on the face and lipshe face onto a graphical model in real-time. The main ad-
of the actors, to simplify and aid the face tracker [12]. vantage of this system compared to previous approaches is
However, markings on the face are intrusive and often im- the remarkable simplicity of the model, which can be easily
practical. Feature-based procedures were the first tracktrained, and the efficiency of the tracker, which can follow a
ing algorithms to be introduced. They are based on track-deforming face at frequencies higher than video frame rate
ing a discrete set of texture elements such as eye or nosen an average personal computer.



2. Appear ance-based tracking The minimum of (3) can be estimated by least-squares

In this section we introduce an appearance-based model [ (;“ } = —(M)J M) MyE, (4)
representing the variations in the appearance of a face ¢
caused by changes in the facial expressions and the illumi- h

. . ereM; = (M| —B) and€ =1 ), t + 0t) — Bey.
nations of the scene. Then we present the algorithm usedN s = (M —B) (Fx, o), £ + 0t) = Bey

. e . . Solving (4) using the matrix inversion lemma, we get the
for efficiently fitting the previous model to a target image.

solution forop [11]

2.1. The model Sp=— (D) IE T A€

Let I(x, t) be the image acquired at timewherexisa ~ WhereAy1 =Mg (I—B(B'B)™'B" )Mo andAyss = Mg (I~
vector representing the co-ordinates of a point in the image B(B'B)'BT) are constant matrices which can be precom-
and letI(x, t) be a vector storing the brightness values of Puted off-line andf = MyZ. An efficient solution forc can
I(x,t). The warping functiory (x, ) models the rigid mo- ~ be obtained from (3) by least-squares, considering&pat
tion of the face, being: the vector of rigid motion parame- IS known
ters. Matrice®, andB; are linear subspace basis modelling dc = ApMop + &], (%)
respectively the modes of non-rigid deformation of the face wherefs = (BTB)~'BT is also constant and can be pre-

and the changes in appearance caused by variations in the, ., e off-line. This is the key for the efficiency of this
illumination. Our appearance-based model is representedalgorithm_

by the brightness constancy equation [11] The termMo pu represents the brightness variatiod tue
_ . to a motion of magnitudé. Intuitively equation (5) states
I(f(x,p04),t) = [Bici¢)(x) + [Bacq,i)(x) that the appearance parameters are computed by projecting
= [Bei(x) Vx € F, (1) onto the subspacgthe rectified image corrected to take into

) . account the incremental motidip and the already known
wherecy, andc;, are respectively the deformation and appearancac;.

illumination appearance parameteBs= [B;|By], ¢/ =
(ci1cq,) ", andF represents the set of pixels of the face
used for tracking. ByBc](x) we denote the value dfc
for the pixel with positionx. Intuitively (1) states that the
rigidly rectified imagel(f(x, u,),t) can be expressed as a With the tracker introduced in section 2 we can extract
linear combination of the deformation subspace basis vec-stabilised images of the face in each frame of the sequence
tors,B4. The illumination subspadgc; corrects the defor-  and, whatis more important, its deformation appearance pa-
mation to take into account the illumination. rameters. In this section we show how to estimate the facial
graphical animation parameters from the deformation ap-
pearance parameters provided by the tracker.

In order to estimate the animation parameters for a given
face region we will use,. sample images. LeétandA be re-
spectively thev; xn, andn, xn, matrices obtained by stor-
ing column-wise the appearance deformation and graphical
animation parameters of the sample sequénddenE is

3. Re-animation

2.2. Efficient model alignment

Tracking a face consists of estimating, for each image in
the sequence, the values of the motipnand appearance,
¢, parameters which minimise the error function

E(p,¢) = [[I(f(x, 1), t) - BeJ(x)|2. (2)  Nelnatna)xn matrix
Minimising (2) can be a difficult task as it defines a non- E— { D } — [ Cd1 mrr Cdne |
convex cost function. We solve it using a Gauss-Newton Wah Walar - an]

minimisation approach. In order to make Gauss-Newton
iterations, a Taylor series expansionlait (u,, c:,t) is per-
formed, producing a new error function

wherew 4 is a diagonal matrix of weights to compensate the
difference in scale between the graphical animation and the
deformation appearance parameters. In our @ase- r1I,
wherer? is the ratio of the variances of deformation appear-
ance parameters and the total variability in the animation
parameters.

E(dp,6¢) = ||Mop + I(f(x, p,),t + 6t) — B(c: + 5¢)| |2,
)

whereM = W‘ } istheN xn (n = dim(u))
] ) ® n=py We assume, that all samples;, ;, and animation parametets;, are
Jacobian matrix of. mean centred.




Using PCA orE, we getB;, the subspace basis expanded 4.2. Synthetic experiments
by thel eigenvectors corresponding to the largest eigenval-

: T : :
ues of the covariance matr(€E " ), which can be written In order to have ground truth animation parameters we
as B generate synthetic image sequences. Using a modified ver-
B, = { d2 ] sion of Parke and Waters’ face model [13] we have rendered
B, .
) ) two test sequences (1100 frames each) of a face performing
Note here that we are using three eigenspaces, two for trackthe same expressions. In the first sequence the illumination
ing and another one for re-animation. _ is constant and is produced by a distant light in front of the
Now we can estimate; using the(n. + n,) x I matriX,  yjrtyal head. In the second, illumination changes are intro

pearance parameters Ihand the animation parameters in - the first and second rows of Fig. 1 are respectively displayed
A. Oncec; is known, we can approximate each paig,(a) some images from these sequences.
by (cq*,a*) such that:

cit | S o B ¥
{ Waa® } =Bjc;, ¢ =B { Waa ] .
Given cg4, Byo andB,, the re-animation problem is to es-
timate the corresponding animation parametats, From

the structure oB; we can writeB xc; = ¢4, wherec; is the
only unknown. So, the solution fay; will be given by

¢ = argrrgn |[Bazc; — cq||* = pinv(Bgz)cq,
Figure 1. Some images from the synthetic se-
where thel x ng, matrix pinyBg2), is the pseudo-inverse quences.
of B42. Then, the graphical animation parameterg ptre
given bya* = W,'B,pinv(Bas)cs = R% ¢4, where then, x

nq Matrix Ry is constant and can be precomputed off-line. We reanimate the synthetic sequences with two trackers,
one with the model introduced in section 2.1 and another
4. Experiments without B;, the subspace modelling changes in illumina-

tion. In Fig. 2 are shown the results of these experiments
In this section we will first describe how to train the for the mouth (left) and eyes (right) graphical animation pa

model introduced in section 2.1. Then, using synthetic se-rameters. In the horizontal axis we represent the graphical
quences, we will evaluate the quality of the estimation of animation parameter number (e.g. for the mouth 1:jawope-
the graphical animation parameters and the separation ohess, 2:lipscontraction, etc.; for the eye 1:lefteyelitf2
appearance deformation and illumination parameters. Fi-eyevertrotation, 3:lefteyehorizrotation, ..., 8:righgkd,
nally, we will show some results of a real experiment in 9:righteyevertrotation,...) and in the vertical the réii-
order to qualitatively validate of our approach with a live tween average rms estimation error and maximum param-

video sequence. eter range. With label$DI_TDI and SD.TDI are plot-
ted the results obtained with the complete tracker for the
4.1. Model training sequences with and without illumination changes respec-

tively. With labelsSDI_TD andSD.TD are plotted the re-

One of the advantages of the appearance model intro-sults for the tracker withows, for the sequences with and
duced in section 2.1 is that deformation and illumination without illumination changes respectively. From thesdglo
subspaces are decoupled, and so, they can be independentiye can see that, when tracking a sequence with fixed il-
trained. Each subspace is trained with one video sequencdumination, there are no significative differences in track
For the illumination subspace we use a sequence in which ang it either with or without the illumination subspace. On
light orbits in front of the target face with a neutral expres the contrary, if the same sequence has illumination changes
sion. For the deformation subspace we use a sequence caphen the tracker using the full model performs significantly
tured with a non-saturating frontal illumination in whidfet better. Moreover, the tracker without the illumination sub
target face performs different facial expressions. The fac space looses track in this sequence. From these experiments
is located and aligned in the first frame of both sequences,we can conclude that: a) the tracker successfully separates
then, with a procedure similar to the one described in [9], changes in appearance caused by face deformation and il-
both sequences are independently tracked and both linealumination; b) it accurately reanimates the graphical nhode
subspace models independently built. even with the simple linear mapping introduced in section 3.



Mouth animation Eyes animation In the synthetic experiments performed we have shown

that the tracker correctly separates changes in the appear-
ance of the face caused by deformations and changes in il-
lumination. Using a simple model representing the linear
correlations between the appearance parameters estimated
by the tracker and the animation parameters of the graphi-
cal model we have been able to reanimate a face graphical
model. A C++ implementation of this system is able to track

. . _ a live sequence of an actor and reanimate a graphical model
Figure 2. Re-animation results for the syn- in real-time.

thetic sequences.
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