
Proc. of ICCV 2005, pp. 877-882, Beijing, China, October 2005.

Efficient model-based 3D tracking of deformable objects
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Abstract

Efficient incremental image alignment is a topic of re-
newed interest in the computer vision community because
of its applications in model fitting and model-based object
tracking. Successful compositional procedures for aligning
2D and 3D models under weak-perspective imaging condi-
tions have already been proposed. Here we present a mixed
compositional and additive algorithm which is applicable
to the full projective camera case.

1. Introduction

Tracking non-rigid objects, and in particular human
heads, is a topic of intense research within the computer
vision community for its application to the construction of
advanced computer interfaces and to achieving graphical
models with realistic animation. Early approaches mod-
elled the face as a rigid 3D textured object and tracked it
by using corner features [6] or by using a model of face
texture mapped onto planar [7], ellipsoidal [2] or cylindri-
cal [9] 3D models. More recently,generative linear models
of face appearance such as 2DActive Appearance Models
(AAMs) [11] or 3D Morphable Models(MMs) [4, 13] have
been successfully used respectively for real-time tracking
and accurate modelling of human faces across changes in
facial expressions and scene illumination.

Fitting a generative linear model to an image is a non-
linear optimisation problem successfully solved by incre-
mentally aligning the model with the target image. Two
efficient minimisation procedures have been proposed in
the literature which can be used for real-time tracking: the
factorisation-basedadditive approach of Hager and Bel-
humeur [7] and theInverse Compositional Image Align-
ment Algorithm(ICIA) of Baker and Matthews [1]. Both
approaches have its drawbacks. Hager and Belhumeur’s re-
quires the Jacobian matrix to be factored. This is possi-

ble for appearance-based affine and projective planar mod-
els [5], but still has to be investigated whether it is ap-
plicable to the more sophisticated generative linear mod-
els. Baker and Matthews’ approach requires the warping
function to be closed under inverse composition, something
which does not hold for AAMs or MMs.

By using an approximation to the composition of AAMs,
Matthews and Baker [11] have recently used ICIA in a real-
time algorithm for tracking faces using AAMs. One limita-
tion of this approach is that AAMs are intrinsically 2D mod-
els and, although they can be used to track a 3D object, this
is achieved at the expense of requiring more shape param-
eters. In consequence, the minimisation must be properly
constrained in order to achieve a robust tracker [16]. Romd-
hani and Vetter [13] also used ICIA for efficiently adjusting
a 3D MM to the image of a static face (a problem similar
to tracking). An important drawback of both approaches is
that they work under weak-perspective imaging conditions.
This is a limitation if, for example, we would like to track a
face imaged by a camera with short focal length and strong
perspective distortion (e.g a low-cost web-cam).

In this paper we present an efficient incremental image
alignment procedure for non-rigid 3D object tracking, based
on a generative linear model of object appearance. By sep-
arating image projection from target motion we introduce a
simple non-rigid motion model in which rigid and non-rigid
motion parameters are easily decoupled, independently of
which camera projection model is used. This enables us to
write an exact inverse composition function. We demon-
strate our technique by tracking synthetic and real image
sequences using a human head as target.

The main contributions of this paper are:
a) Our tracker is independent of the camera model (in our

experiments we use a full projective camera).

b) We use an exact inverse composition function, con-
trary to some previous approximations [11].

c) Rigid and non-rigid motion parameters are easily de-
coupled (this is an important issue in terms of compu-



tational efficiency).

2. The model

Our goal is to use a simple target model which can be
easily acquired and which is suitable for tracking an arbi-
trary non-rigid object, in our experiments a human head. In
order to achieve this goal we will use as model a set of im-
ages of the target and a sparse representation composed of
a set of small planar textured patches, a set of shape bases
which encode the modes of deformation and a set of texture
bases which represent variations in the brightness caused by
changes in the illumination of the scene (see Fig. 1).

Figure 1. Our model for a human face.

2.1. The patches

Each patch of our model is tangent to the 3D volume of
the object at the patch centre. The texture of the patch is the
result of orthogonally projecting the underlying object tex-
ture onto a small plane. Our patches are similar to the “hy-
perpatches” of Wiles et al. [15]. The main difference being
that hyperpatches are related to corner-like regions on the
face, since they are individually searched for and registered
between frames. Our patches are not necessarily attached
to corner-like features, since we track them globally and the
aperture problem applies to the set of all patches. In the
case of a human face, texture patches are distributed over
the face (see Fig. 1).

2.2. Motion model

The 3D motion of a point is the composition of a rigid
motion caused by the translation and rotation of the ob-
ject in space and a non-rigid motion caused by the de-
formation of the object. LetXi = (xi, yi, zi)

⊤ denote
the co-ordinates of a point in 3D space and letS =
(X⊤

1 ,X⊤
2 , . . . ,X⊤

N )⊤ be the 3D structure represented by a
set ofN points in space.
Non-rigid motion .

The non-rigid motion of pointXi can be described as
a linear combination ofks basis points,bs
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Then, the shape of any configuration of the non-rigid ob-
ject is expressed as a linear combination of a set ofks basis
shapes stored in matrixBs plus a mean vectorS0: S =
S0 + B

scs, S,S0 ∈ ℜ3N×1, Bs ∈ ℜ3N×ks , cs ∈ ℜks×1,
wherecs = (cs

1, c
s
2, . . . , c

s
ks

)⊤ is the vector of shape con-
figuration weights. The mean vectorS0, also calledrigid
component, represents the rigid configuration of the object,
and the basisBs represents the allowedmodes of deforma-
tion.
Rigid motion.

The 3D shape can rotate and translate rigidly in space.
Let R(α, β, γ) ∈ ℜ3×3 andt ∈ ℜ3×1 be the rotation matrix
and translation vector representing such motion. Then, the
rigid motion of pointXi would be given byX′

i = RXi + t.
We will denoteS′ = RS+t the result of applying rotationR
and translationt to each point of the 3D shapeS, producing
a new shapeS′.
Motion model

Any configuration of the object in 3D space,S, can be
generated with a motion model,f , which moves and de-
forms the average shape

S = f(S0,µ) = R(S0 + B
scs) + t, (1)

whereµ = (α, β, γ, tx, ty, tz, (c
s)⊤)⊤ is the vector of mo-

tion parameters. Note thatf is such thatf(S,0) = S. Con-
versely, the average shape can be reached from any object
configuration viaS0 = f−1(S,µ) = R

⊤(S − t) − B
scs.

2.3. Shape projection

The projection of pointXi onto an image is represented
by xi = p(Xi,q) ∈ ℜ2×1, whereq is the vector of projec-
tion parameters. Similarly, the 3D object shapeS projected
onto a 2D image is denoteds = p(S,q) ∈ ℜ2N×1. Here we
make no assumption as to which projection model is used,
although in our experiments we will assume a projective
camera.

In previous approaches the motion model also included
implicitly [7, 11] or explicitly [13] the projection of the
point onto the image plane. In general, this is not a good
choice since it complicates unnecessarily the computation
of the inverse shapef−1(S,µ) (e.g. see Sec. 4 in [11]) and
preventsf ◦f−1 from being closed. This is why an approx-
imated inverse composition has to be used in [11]. Another
collateral advantage of having a simpler motion model is
that rigid and non-rigid motion parameters are decoupled
and can be easily identified.

2.4. Texture model

Let us denoteI[p(Xi,q)] the brightness value (or RGB
values) assigned to the projection of pointXi onto image



I(x). It depends on the object colour, the colour and inten-
sity of the illumination source and the relative orientation
between source and object surface atXi [3]. These factors
can be modelled by

I[p(Xi,q)] = T [p(Xi,q)] +

kt
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j=1

bt
ijc

t
j , bt

ij , c
t
j ∈ ℜ,

wherect = (ct
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)⊤ is the vector oftexture con-
figuration weights, bt

ij is the j-th component of the texture
base associated with 3D pointXi andT [p(Xi)] is theaver-
age texturefor that point. The texture base models changes
in the brightness of a pixel caused by the illumination of the
scene.

The texture model for a deformable object represented
by structure vectorS is I[p(S,q)] = T[p(S,q)] + B

tct,
I,T ∈ ℜN×1, ct ∈ ℜkt×1, whereBt ∈ ℜN×kt is the matrix
storing the texture basis shapes andct = (ct

1, c
t
2, . . . , c

t
ks

)⊤

is the vector of texture configuration weights. Here we as-
sume a gray level image, a similar model could be built for
RGB colour values [13].

In general the projected pointp(Xi,q) may not coincide
with an integer position inI(x). In this case the brightness
value I[p(Xi,q)] is computed through interpolation from
neighbouring pixels.

The tracking procedure described in the following sec-
tion is based on a constancy constraint on the brightness
values normalised with respect to the illumination. We
define the average texture of a point to be itsnormalised
brightness, N(I[p(Xi,q)], ct) = T [p(Xi,q)], and thenor-
malised texturefor an object configuration

N(I[p(S,q)], ct) = T[p(S,q)] = I[p(S,q)] − B
tct. (2)

3. Tracking

In this section we describe an efficient procedure for
tracking a non-rigid object through an image sequence us-
ing the object model presented in section 2. First we intro-
duce the brightness constancy constraint and pose the track-
ing problem as a parametric minimisation based on such
constraint. We then show how a mixed compositional and
additive algorithm can be used for efficiently computing the
best set of parameters.

3.1. Problem statement

LetS0 be the rigid component of a deformable object,µt

be the set of parameters that alignsS0 with the image ac-
quired at timet, I[x, t], andct

t be the texture configuration
weights which normalise the brightness values ofI[x, t].

Then, for any time instantst0 andt, the followingbright-
ness constancyequation holds

N(I[p(f(S0,µt),q), t], ct
t) =

N(I[p(f(S0,µt0),q0), t0], c
t
t0

), (3)

which is a generalisation of the so-called image constancy
assumption [7, 8].

Let us assume thatI[x, t0] is a fixedreference imagethat
we will denoteIr(x), and thatI[x, t] is the target image
which varies over time as the object moves and deforms.
We will also assume that the motion model parameters are
related to our target object in such a way thatµt0 = 0.

Tracking amounts to finding, for each time instantt, the
set of parametersµt andct

t for which equation (3) holds.
This can be achieved by solving the following least squares
problem1

min
µt,c

t
t

||N(I[p(f(S0,µt),q), t], ct
t) −

N(Ir[p(S0,qr)], c
t
r)||

2. (4)

This a complex minimisation problem since the cost func-
tion is non-convex. Similar problems have been tradition-
ally solved linearly by estimating the model parameters in-
crementally. We can achieve this by making a Taylor series
expansion of (4) and computing the increment in the motion
parameters by Gauss-Newton iterations. Different solutions
have been proposed in the literature depending on which
term of (4) the Taylor expansion is made on and how the
motion parameters are updated [10, 7, 14, 1].

3.2. Efficient tracking

The computational cost of tracking with this approach
is due mainly to the cost of estimating the Jacobian of the
image brightness values w.r.t. the motion model’s parame-
ters and its pseudo-inverse, which are needed to make the
Gauss-Newton iterations. The factorisation-based additive
approach of Hager and Belhumeur [7] and the composi-
tional approach of Baker and Matthews [1] are two efficient
solutions for similar problems. Here we introduce an ef-
ficient minimisation procedure which uses a compositional
approach for estimating the motion parameters and an addi-
tive one for the texture configuration weights.

The minimisation solved for tracking is the following

min
δµ,δct

||N(I[p(f(S0,µt),q), t + δt], ct
t) −

N(Ir[p(f(S0, δµ),qr)], c
t
r + δct)||2, (5)

where the first term represents the normalised brightness
values obtained when projecting the configuration of the

1In general, several reference images may be used, the only require-
ment being that all of them represent the same non-rigid deformation.



object at timet onto the image acquired at timet + δt.
The second term is the incremental non-rigid motion and
the changes in texture that must take place so that the same
set of normalised brightness values in the first term are ob-
tained from the reference image. Parametersδµ and δct

represent respectively the motion and deformation of the
target object between time instantst and t + δt, and the
changes in texture caused by the illumination.
Estimating δµ and δct

The increment in motion and texture parameters can be
linearly estimated by making a Taylor series expansion of
the second term in (5)

N(Ir[p(f(S0, δµ),qr)], c
t
r + δc) =

Ir[p(f(S0,0),qr)] − B
tct

r + Mµδµ − Mctδct, (6)

where
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Then, from (6), minimisation (5) can be rewritten as

min
δµ,δct

||E(t + δt) − Mµδµ + B
tδct||2,

which can be solved by least squares

[

δµ

δct

]

= (M⊤0 M0)
−1

M
⊤

0 E(t + δt)

where E(t + δt) = I[p(f(S0,µt),q), t + δt] −
Ir[p(S0,qr)]− B

t(ct
t − ct

r) is the error made when project-
ing the configuration at timet onto the image acquired at
t + δt andM0 = [ Mµ | − B

t ] is the Jacobian of the reference
image with respect to the motion and texture parameters.
Note thatM0 is constant and its inverse can be precomputed
off-line. This is the key for the efficiency of this algorithm.

In [1] this minimisation is performed by making the
columns ofBs orthogonal to those ofBt. This has been
reported in [13] to introduce perturbations inBs which de-
crease the accuracy of the shape recovery. Instead, here we
explicitly solve for both sets of parameters.

The Jacobian matrixM0 models how the brightness of
eachXi changes as the target moves infinitesimally. It rep-
resents the information provided by each point to the track-
ing process. WhenM⊤0 M0 is singular, the motion cannot be
recovered. This would be a generalisation of the so called
aperture problemin the estimation of optical flow. This
is also the reason why we can track an object with low-
textured patches (non corner-like), because each patch con-
tributes to the minimisation and the aperture problem ap-
plies to the set all of them.
Estimating µt+δt and ct

t+δt

From (2) and introducing the change of variableS′
0 =

f(S0, δµ), (5) can be rewritten

min
δµ,δct

||I[p(f(f−1(S′

0, δµ),µt),q), t + δt] −

B
t(ct

t − δct) − (Ir[p(S′

0,qr)] − B
tct

r)||
2. (7)

Following ICIA convention [1] and comparing (4)
and (7) we can conclude thatct

t+δt = ct
t − δct and

f(S′
0,µt+δt) = f(f−1(S′

0, δµ),µt). For our 3D model
f(f−1(S0, δµ),µt) is an approximation tof(S0,µt+δt),
but a strict equality for a 2D model.

In order to obtainµt+δt we expand

f(f−1(S′

0, δµ),µt) =

RtδR
⊤(S′

0 + δRBs(cs
t − δcs)) + tt − RtδR

⊤δt, (8)

and again comparing (1) with (8) we can conclude that
Rt+δt = RtδR

⊤, tt+δt = tt − RtδR
⊤δt and cs

t+δt =
cs

t − δcs. Note that asS′
0 is rotated byδR from S0, then

B
s must also be corrected toδRBs.

Previously, decoupling rigid and non-rigid motion pa-
rameters in the motion model was only possible for a weak-
perspective camera model and required a complex proce-
dure [11, 13].

The final algorithm is as follows:
• Off-line:

1. ComputeM0.
2. Compute and storeM+ = (M⊤0 M0)

−1
M
⊤
0 .

3. Compute and storeir = Ir[p(S0,qr)]

• Online:
1. E = I[p(f(S0,µt),q), t+δt]− ir −B

t(ct
t−ct

r).
2. Compute[δµ, δc]⊤ = M

+E .
3. Updatect

t+δt = ct
t − δct.

4. UpdateRt+δt = RtδR
⊤, tt+δt = tt − RtδR

⊤δt.
5. Updatecs

t+δt = cs
t − δcs.

4. Experiments

In order to evaluate our algorithm empirically, we have
set up experiments with synthetic and real image sequences.
Synthetic experiments aim to validate the theoretical basis
of the algorithm and real ones intend to demonstrate the
suitability of our approximation for tracking live sequences.

4.1. Synthetic experiments

We have developed a framework for creating synthetic
sequences of a deforming head model. The head model is
based on a previous work by Parke et. al. [12] which in-
cludes 512 vertices and encodes 18 different muscles of the
face. We generate facial expressions by actuating on the
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Figure 2. Synthetic sequence key-frames and tracking resul ts.

different facial muscles. A rigid body transformation (ori-
entation change plus translation) to the computed model de-
termines head pose and orientation. Then we map a photo-
realistic texture of a face onto the model and project both
onto the image using a free ray-tracing tool2. The ray-
tracer simulates a projective camera located at 20 units of
distance from the head model, which is has a depth of 5
units. Fig. 2 shows several key frames of a 300 frames syn-
thetic sequence. From its starting position, the head trans-
lates along the horizontal image axis while rotating around
its three main axis. The sequence comprises a total of ten
facial expressions which includes mouth opening, eyebrows
raising, frowning, etc. To the left of the scene we have
placed a light source, pointing directly towards the head,
and we have assumed the head surface to be Lambertian.

We obtained our basis shapes from a 750 frames se-
quence which comprised all the possible facial expressions
for our model. We place our patches on 194 polygon ver-
tices distributed over the face. By performing PCA on the
matrix which stores the tracks of all patches across the se-
quence we we obtain the modes of deformation. We used
five modes of deformation which encoded 98% of the vari-
ance in the data. By orbiting the light source around the
head model in neutral position we obtained a 200 image
sequence representing different lighting conditions. We ob-
tained the texture basisBt by performing PCA on the matrix
storing the brightness values of the projections of our head
model onto each image.

In Fig. 2 we show some results from the 300 frames syn-
thetic sequence. Figure 3 shows some of the computed pa-
rameters plotted against their ground truth values. These
ground truth values are the ones used to create the syn-
thetic sequence. Estimated values from the tracking algo-
rithm for the rotation around the horizontal axis,α, transla-
tion along the horizontal axis,tx , and the first linear coef-
ficients for both the shape and texture deformations,cs

1 and

2See http://www.povray.org

ct
1, are plotted along with their ground truth. Results show

that both motion and texture parameters are accurately esti-
mated even when there are quite noticeable changes in illu-
mination and facial expressions.
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Figure 3. Estimated vs. ground truth values.
First row, rotation around head vertical axis
(left) and horizontal translation (right). Sec-
ond row, fist shape configuration weight (left)
and first texture configuration weight (right).
Red continuous line stands for estimated val-
ues for each frame whereas blue dashed line
stands for ground truth data.

4.2. Real experiments

We have also some preliminary results for a 20 seconds
real video sequence. We imaged an actor performing sev-
eral expressions (anger, sadness and surprise) with a cali-
brated Basler A102fc colour camera located roughly 1 me-
ter away from the actor.



In a video sequence different from the previous one and
using a VICON motion capture system we tracked 39 mark-
ers on the actor’s face. The motion of a total of 121 patches
was interpolated from the 3D tracks of the markers and
stored in a motion matrix. We obtained the shape basis for
the actor’s head by performing PCA on the motion matrix.

Figure 4. Real sequence key frames and track-
ing results.

We show in Fig 4 some key frames of the real video se-
quence with the estimated location of the patches overlayed
on it. In spite of the sparseness and low quality of the model
the tracker performs well.

5. Conclusions

We have presented a new formulation of an efficient im-
age alignment algorithm for non-rigid 3D generative lin-
ear models of object appearance. Separating projection and
motion models enables us to:

a) Build a tracker independent of the image projection
model. We have shown that it performs correctly for
sequences captured under projective imaging condi-
tions.

b) Introduce a simple deformable motion model in which
the inverse shape composition can be exactly com-
puted.

c) Directly identify rigid and non-rigid motion parame-
ters.

Also, the whole tracker itself is interesting in its own
right given its theoretical simplicity and ease of program-
ming.

Although in our experiments we have used a sparse
patch-based model of target appearance, the algorithm is
applicable to any generative linear models such as AAMs
or MMs.
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