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Abstract. In recent years we have witnessed significant progress in the performance of object detection in images. This advance
stems from the use of rich discriminative features produced by deep models and the adoption of new training techniques. Al-
though these techniques have been extensively used in the mainstream deep learning-based models, it is still an open issue to
analyze their impact in alternative, and computationally more efficient, ensemble-based approaches. In this paper we evaluate the
impact of the adoption of data augmentation, bounding box refinement and multi-scale processing in the context of multi-class
Boosting-based object detection. In our experiments we show that use of these training advancements significantly improves the
object detection performance.
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1. Introduction

Visual object detection is the first step in many rel-
evant Computer Vision problems such as facial facial
landmarks detection [1], body pose estimation [2], self
driving cars [3], vehicle type analysis [4], text read-
ing [5], etc. The object detection pipeline can be de-
scribed in terms of three basic components: 1) im-
age features: Haar-like-features, Histograms of Ori-
ented Gradient (HoGs) features, Integral Channel Fea-
tures (ICF), Locally Decorrelated Channel Features
(LDCF), Convolutional Neural Networks (CNNs),
etc; 2) classification algorithm: AdaBoost, RealBoost,
Support Vector Machines (SVMs), Neural Nets, etc;
3) detection strategy: sliding window, candidate win-
dow proposals and bounding box regression, direct re-
gression from image features (Single Shot Detectors),
Hough voting, etc.

Since the publication of Viola and Jones [6] sem-
inal work, the performance of object detection algo-
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rithms has improved by changing several parts of the
detection pipeline. Visual features have evolved from
being hand-crafted [7] to automatically selected from
a pool with Boosting [8], Random Forest [9] or learned
with a CNN [10]. The brute force sliding window ap-
proach [6–8] has evolved into fast region proposal al-
gorithms [5, 10] and more recently Single Shot De-
tectors [11, 12]. The Boosting approach has received
much attention because it is computationally very ef-
ficient and achieves very good performance in various
object detection problems such as pedestrians [13, 14],
multi-view faces [15] or multi-view cars [16]. The
key to its success is the use of the feature selection
capabilities of Boosting together with different pool-
ing strategies [13] and rich image descriptions such
as the ICF [8]. Further, object detection has evolved
from detecting a single object category to being able
to detect multiple categories and different views at the
same time [17]. The usual framework for Boosting-
based object detection uses binary classification (e.g.
AdaBoost). In this regard, essentially multi-class de-
tection problems, such as face [15] or car [16] de-
tection, have been usually solved with binary classi-
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fiers: either with a monolithic detector (i.e. Object-vs-
Background) or with a detector per object view or pos-
itive class (i.e. using K detectors).

Powered by the use of deep neural nets [18, 19],
modern object detection algorithms have achieved re-
markable precision [10–12]. This is due to the use of
discriminative features produced by deep models and
the adoption of new training strategies. However, these
approaches require advanced computational resources,
such as Graphical Processing Units (GPUs) to achieve
real-time performance. This prevents their use in de-
vices with limitations in computing power or energy
supply, such as aerial vehicles, micro-robots or mobile
phones. Hence, the necessity of developing very effi-
cient object detection algorithms, such as, for example,
those based on Boosting approaches.

One of such methodological advances in object de-
tection is the refinement of the bounding box of the de-
tected objects. Classifiers are usually trained with fixed
bounding box size and aspect ratio (AR). The bound-
ing box refinement step is crucial to achieve top per-
formance when dealing with objects showing differ-
ent aspect ratios depending on their pose or config-
uration. Modern CNN-based detectors such as Faster
RCNN [10], YOLO [11] and SSD [12] perform bound-
ing box regression. Also, some of the best results in
the KITTI car detection benchmark [20, 21] iteratively
adjust the detection bounding box. In section 4 we in-
troduce a bounding box refinement scheme. The most
similar approach to ours was introduced by Juránek et
al. [22]. They use a Real AdaBoost binary classifier
for car detection. In their work the estimation of the
3D orientation of the car is performed using a similar
scheme to our bounding box aspect ratio estimation.
However, in their solution the bounding box aspect ra-
tio is fixed and depends on the car orientation. This is
a limitation, since cars with the same orientation may
have different aspect ratios.

Another training improvement is the augmentation
of training data by producing realistic image transfor-
mations that do not change their labels. In the SSD de-
tector [12] the newly generated data accounts for an
8.8% increase of the performance in the VOC 2007
test dataset. It is also a common strategy in the top per-
forming car detectors in the KITTI dataset [21]. An al-
ternative way of using additional data is to pre-train
the model in a related but different dataset. All top per-
forming algorithms in KITTI cars detection use pre-
trained models in the ImageNet classification prob-
lem [20, 21, 23]. In the Boosting detection literature it
is typical to use the geometric augmentation with im-

age translation, rotation [8], image horizontal flip [24]
and aspect ratio changes [25].

Recently, theoretically sound results in the context
of multi-class Boosting provide new tools to address
the unbalanced and asymmetric classification prob-
lems arising in object detection [24]. In this paper we
endow this algorithm with modern training strategies,
such as data augmentation, bounding box regression
and multi-scale processing and evaluate the increase in
performance achieved with these improvements.

2. Multi-class boosting algorithm

A Boosting classification algorithm is a supervised
learning scheme that builds a binary prediction model
by combining a collection of simpler base models or
weak learners [26]. It receives as input a set of N
training data instances {(xi, li)}N

i=1, where xi ∈ Rm

represents an object to be classified with class label
li. In our multi-class Boosting scheme [27] each la-
bel li ∈ L = {1, 2, . . . ,K} has a corresponding mar-
gin vector yl ∈ Y , where Y = {y1, . . . , yK}. yl has
a value 1 in the l-th coordinate and −1

K−1 elsewhere.
So, if l = 1, the margin vector representing class 1 is

y1 =
(

1, −1K−1 , . . . ,
−1

K−1

)>
. Hence, it is immediate to

see the equivalence between classifiers G defined over
L and classifiers g defined over Y , G(x) = l ∈ L ⇔
g(x) = yl ∈ Y .

2.1. BAdaCost: Cost-sensitive Multi-class Boosting
classification

Cost-sensitive classification endows the traditional
Boosting scheme with the capability to modify pair-
wise class boundaries. In this way, we can reduce the
number of errors between positive classes (e.g. differ-
ent target orientations) and improve recall when object
classes have different aspect ratios. To this end we use
BAdaCost [27] (Boosting Adapted for Cost matrix), a
recently introduced multi-class cost-sensitive Boosting
classifier. In this section we briefly introduce it.

Costs are encoded in a K×K-matrix C, where each
entry C(i, j) represents the cost of miss-classifying an
instance with real label i as j. Here it is assumed that
C(i, i) = 0,∀i ∈ L, i.e. the cost of correct classifica-
tions is zero.
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Let C∗ be a K × K-matrix defined in the following
way

C∗(i, j) =

{
C(i, j) if i 6= j
−
∑K

h=1 C( j, h) if i = j
,∀i, j ∈ L.

(1)

In a cost-sensitive classification problem each value
C∗( j, j) represents a “reward” associated to a correct
classification. The j-th row in C∗, denoted as C( j,−),
is a margin vector that encodes the costs associated
to the j-th label. The multi-class cost-sensitive mar-
gin associated to instance (x, l) is given by zC :=
C∗(l,−)·g(x). It is easy to verify that if g(x) = yi ∈ Y ,
for a certain i ∈ L, then C∗(l,−) · g(x) = K

K−1C∗(l, i).
Hence, using this generalized margin, BAdaCost de-
fines a Cost-sensitive Multi-Class Exponential Loss
Function (CMELF):

LC(l, g(x)) : = exp(zC)

= exp (C∗(l,−) · g(x))

= exp

(
K

K − 1
C∗(l,G(x))

)
. (2)

The margin, zC , yields negative values when the clas-
sification is correct under the cost-sensitive point of
view, and positive values for costly (wrong) outcomes.
The CMELF is a generalization of the Multi-class Ex-
ponential Loss introduced in [28].

BAdaCost resorts to the CMELF (2) for evaluating
classifications encoded with margin vectors. The ex-
pected loss is minimized using a stage-wise additive
gradient descent approach. The strong classifier that
arises has the following structure:

H(x) = arg min
k

(
C∗(k,−) ·

M∑
m=1

βmgm(x)

)
= arg min

k
(C∗(k,−) · f(x)) , (3)

where f(x) is a linear combination of M cost-sensitive
weak learners, {gm(x)}M

m=1, that the algorithm learns
incrementally. In this case f(x) is a vector with the es-
timated class margin vector from the feature vector x.

2.2. Object detection score for BAdaCost

When building an object detector it is necessary
to have a confidence measure or detection score. In

BAdaCost the predicted costs incurred when classify-
ing sample x in one of the K classes are given by the
vector:

c = C∗ · f(x) = (c1, . . . , cK)>. (4)

From now on, in multi-class detection problems, we
assume that the background (negative) class has label
l = 1 and the object classes (e.g. different views of a
car) have label l > 1. Therefore, we can compute the
score of x as

s(x) = (c1 − min(c2, . . . , cK)). (5)

This score has desirable properties for detection
problems: 1) s(x) > 0 when the winner class (i.e. the
class with lowest cost) has label l > 1; 2) s(x) < 0
when the winner class is l = 1. With this score we
can improve the classifier efficiency by using a cascade
calibration algorithm, for example [29], and stop the
evaluation of weak learners whenever the score falls
below a calibrated threshold.

3. Boosting Data Augmentation (DA)

One of the main problems for training an object de-
tector is the limited amount of training data, that could
cause the classifiers to overfit. The solution adopted in
the literature is to generate new synthetic data from the
training set. This is known as data augmentation (DA).

We model the object to be detected as multiple pos-
itive classes depending on the orientation, see Fig. 6.
To augment and balance our dataset we increase the
number of images in the small classes. To this end we
sequentially apply a combination of basic photometric
changes to the image RGB values (see Fig. 1). We start
by generating a random number r in the range [0, 1]. If
r > 0.5 we make the following transformations:

1. Brightness change,
2. Contrast change,
3. Saturation change,
4. Hue Change.

Otherwise:

1. Brightness change,
2. Saturation change,
3. Hue Change,
4. Contrast change.

These photometric changes are implemented as:
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– Brightness change. Generate a random number
rb in the range [0, 1]. If rb < pb a random value
in the range [−∆b,∆b] is added to all pixel RGB
values.

– Contrast change. Generate a random number rc

in the range [0, 1]. If rc < pc all pixel values
are multiplied by a random value in the range
[clow, chigh].

– Saturation change. Generate a random number
rs in the range [0, 1]. If rs < ps the image is trans-
formed to the HSV color space. All pixel satura-
tion values in the image are multiplied by a ran-
dom value in the range [slow, shigh] and the resul-
tant HSV values are transformed back to RGB.

– Hue change. Generate a random number rh in the
range [0, 1]. If rh < ph the image is transformed to
the HSV color space, a random value in the range
[−∆h,∆h] is added to all hue values in the image
and the new HSV values are transformed back to
RGB.

As we show in section 6.1 the generation of syn-
thetic data is crucial to achieve a 5.5% improvement
in detection results (see Table 2, Moderate). In our de-
tection experiments some views have fewer examples.
The use of photometric augmentation allows us to bal-
ance the dataset. Further, it allows us to increase the
classifier capacity with more and deeper decision trees.
This is consistent with similar results in the problem of
pedestrian detection [25].

4. Bounding Box Aspect Ratio estimation (BB)

As we show in our experiments, refining the bound-
ing box estimation increases the performance of our
detector. To this end we modify the multi-class Boost-
ing classifier introduced in section 2.

The classifier learns m cost-sensitive decision trees
with Gini impurity measure. The modifications of the
tree to make it cost-sensitive are two-fold:

1. On each tree node S , the probability of class l,
p(l), is multiplied by the percentage of costs as-
sociated to class l (i.e. the sum of a cost matrix
row), c(l):

p′(l) =

∑
i∈S wi · I(li = l)∑

i∈S wi︸ ︷︷ ︸
p(l)

K ·
∑K

k=1 C(l, k)∑K
i=1

∑K
j=1 C(i, j)︸ ︷︷ ︸

c(l)

,

(6)

where I() is the indicator function, and wi is the
weight assigned by the BAdaCost algorithm to
the i-th datum in node S . Then, p′(l) is used in
the Gini impurity.

2. Then we classify with the minimum cost rule on
each leaf node S :

hS = arg min
l

(p(1), . . . , p(K))·C(−, l) (7)

where p(l) =
∑

i∈S wi·I(li=l)∑
i∈S wi

and C(−, l) is the l-
th column of the cost matrix.

During the training phase of the baseline BAdaCost
algorithm, for every decision tree and leaf node S , we
store the minimum cost label, hS . During the detection
phase, the trees are traversed with the feature vector x
corresponding to a candidate window (see Fig.2). As
we have seen in section 2, we compute vector f(x) as
a linear combination of tree labels h, coded as mar-
gin vectors g(x) = yh ∈ Y . Then we use vector f(x)
in equation (3) to obtain the minimum cost view class
estimation. To correct the bounding box we have two
options:

A. The baseline BAdaCost detector computes the
mean AR of each class from the ground truth
training data bounding boxes in a vector a[h]. The
final estimated class, h, is that corresponding to
the minimum value in equation (3) using the es-
timated f(x) =

∑
m βmgm(x). The aspect ratio of

each detection is that associated to h.
B. Our new procedure to estimate the aspect ratio

follows a similar approach to the computation of
f(x) in BAdaCost. The m-th WL tree outputs two
vectors of size K (i.e. number of classes): a) the
gm(x) margin vector that codifies the estimated
class and b) the am(x) vector of per class mean
aspect ratios of the training data that fall in the
corresponding leaf node. Then, both sets of vec-
tors are added using the boosting weight of each
tree, generating f(x) =

∑
m βmgm(x) vector (for

classes) and a(x) =
∑

m βmam(x) vector (for as-
pect ratios). The final estimated class, h, is that
corresponding to the minimum value in equation
(3) using the estimated f(x). The aspect ratio is
that corresponding to the estimated class, a(x)[h]
(see Fig. 2).

We correct each window keeping the height constant
and adapting the AR.
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Fig. 1. Sample KITTI photometric data augmentation. In the first column we display the original training image, followed by 8 generated images.

Note that in option B we may exclude the first tp−1
trees from the model. The rationale is that in the first
trees the classifier is not accurate enough. In the exper-
imental section we will see that this is in fact true, but
the difference in performance is marginal. The overall
approach to simultaneous detection and AR estimation
is shown in Fig. 2.

5. Multi-scale detection

The classifiers used in object detection are typically
learned with a fixed scale. Both Boosting-based [8,
13, 15, 24, 25, 30] and CNN-based [10, 11] detec-
tors are all trained with a fixed base image size. How-
ever, objects of the same class at different sizes usually
need different features to be detected. CNN-based de-
tectors overcome this problem using feature maps ex-
tracted from layers with different resolutions [12, 31].
Boosting-based detectors use a fixed size classifier in
an sliding window on a pyramid of feature maps ex-
tracted at decreasing image resolutions. This enables
the detection of objects at different sizes. The detection
rate also improves using a classifier trained at several
base sizes [16, 32].

In this paper we use a multi-scale (MS) detection
approach training different BAdaCost detectors at dif-
ferent base sizes. For the KITTI car dataset, our multi-
scale approach trains three classifiers with 1.75 as-
pect ratio: 48×84, 56×98 and 64×112 pixels. For the
KITTI cyclists we also train three classifiers but in this
case with aspect ratio 1.5: 48×72, 56×84 and 64×96
pixels. Note here that the fixed aspect ratio is only used
to detect the presence of the target. Then the detected
window is adjusted with the procedure described in

section 4. Finally, we slide these detectors along an ef-
ficiently estimated feature pyramid [8, 33], see Fig. 3.

As we show in Fig. 5, features selected at different
scales show better definition of interesting areas as the
resolution increases. In the car problem, these features
are mainly around the rear lights and the edges that de-
fine the car shape at different orientations (see Fig. 4).
In section 6 we show that we achieve a significant im-
provement in recall using detectors trained at different
scales.

6. Experiments

To make our experiments we have added BAda-
Cost’s cost-sensitive decision trees and multi-class de-
tection to Piotr Dollar’s Matlab Toolbox1. Our imple-
mentation is publicly available at https://github.com/
jmbuena/toolbox.badacost.public.

In the experiments we use detection problems where
the target object changes its Bounding Box AR de-
pending on the view angle. Car and cyclist detection
in the KITTI dataset [34] are good examples of this
kind of problems. The database presents three subsets:
easy, moderate and hard (easy⊂moderate⊂ hard). We
carry out the evaluation in each level separately. In to-
tal there are 7481 images for training and 7518 for test-
ing. Since the testing images have no ground truth, we
split the training set into training and validation sub-
sets: the first 6733 images (90%) for training (KITTI-
train90) and the last 748 images (10%) for validation
(KITTI-train10). In all the experiments we use cost-
sensitive decision tree weak learners that select fea-
tures from LDCF channels [33]. We augment our data

1https://github.com/pdollar/toolbox

https://github.com/jmbuena/toolbox.badacost.public
https://github.com/jmbuena/toolbox.badacost.public
https://github.com/pdollar/toolbox
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Fig. 2. Bounding Box aspect ratio estimation. We learn an ensemble of multi-class cost-sensitive trees. We estimate the AR distribution using all
the trees from tp onwards. The estimated AR is that of the minimal cost class.

Fig. 3. Multi-scale detection. We apply classifiers trained with different base scale (i.e. blue, green and red rectangles) to detect objects with
various dimensions.

by flipping images horizontally. To compare detectors

in the KITTI dataset we use the Average Precision

(AP), computed using 11 (AP11) and 40 (AP40) points

in the precision-recall curve [35]. The traditional per-

formance measure in KITTI was AP11. However, since

October 2019 it has changed to AP40. Thus, we report

both. We select the classifier parameters by grid search

in the validation set, KITTI-train10.

For data augmentation we use the following param-

eters (see section 3): pb = 0.5, ∆b = 32 for bright-

ness; pc = 0.5, clow = 0.5, chigh = 1.5 for contrast;

ps = 0.5, slow = 0.5, shigh = 1.5 for saturation; and

ph = 0.5, ∆h = 18 for hue changes.

6.1. Car detection experiments

Here we improve the results in our previous work [36]
by increasing the number of view classes (K=20 to 25),
the depth of the weak learners trees (D=8 to 10) and the
regularization (shrinkage from 0.1 to 0.05, fraction of
features searched in the training of each weak learner
from 1/16 to 1/32). Increasing tree depths improves
classifier capacity, hence enabling the use of more ori-
entation classes and achieving better predictions, but
at the expense of stronger regularization. Therefore, in
the experiments we divide the car training images into
K=25 view classes (see Fig. 6) and use KITTI-train90
for training and KITTI-train10 for validation. In all
the experiments we train a 48×84 pixels car model,
AR=1.75. We start the pyramid one octave above the
actual image size.



J. M. Buenaposada et al. / Article Title 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Car parts and location of the features selected by the detector.

During training, we perform 4 rounds of hard neg-
atives mining with the KITTI training image subset
(KITTI-train90). The best number of cost-sensitive
trees is T=1024 (4 rounds with 32, 128, 256 and T
weak learners, respectively), tree depth is D=10, the
number of negatives per round is N=7500 and the
total amount of negatives used in the final round is
NA=30000.

The cost matrix is set to weigh up gross errors be-
tween view classes. This is important because estimat-
ing the wrong class will produce a Bounding Box with
the wrong AR (e.g. frontal car, AR=1.0, left side car,
AR >>1.0). We show our cost matrix in Fig. 7. The
non-car class has label 1. Positive classes have the la-
bels shown in Fig. 6 increased in one to account for the
non-car class.

First, we train only one detector with the mean as-
pect ratio of each view class stored in the tree leaves.
We set the detection threshold to an intersection over
union (IoU) value 0.7, as established in the KITTI
benchmark. Then, we use different AR estimation
strategies. First we test the AR estimation algorithm
introduced section 4 with different values of tp (first
tree to use in the estimation). In Fig. 8 we show that
we get marginal improvements when selecting the best
tp.

Second, we compare different AR estimation strate-
gies (we use here tp = 1): use the output of the fixed
size sliding window detector trained at 48×84 pix-
els (Fixed-Equal), modify the fixed aspect ratio win-

dow with the estimated class view (Fixed-Class-Mean)
and, finally, our proposal (Estimated-AR). In Fig. 9 we
confirm that a fixed aspect ratio detector, Fixed-Equal,
produces the worst results. Results in the Moderate
KITTI subset (the one used for ranking) improve sig-
nificantly with the Fixed-Class-Mean strategy. Finally,
we may improve even further the AP40 by using the
proposed Estimated-AR strategy. We improve AP40 by
0.7%, 0.4% and 0.4%, respectively, in the Easy, Mod-
erate and Hard settings. Since our bounding box es-
timation procedure is computationally cheap, it is a
significant improvement. In fact, it only takes slightly
more memory to store the K possible aspect ratios, am,
on each tree node. On the other hand, the added com-
putation is negligible and consists on computing the
aspect ratios weighted vector, a(x) =

∑M
m=tp

βmam(x).
To further analyze the performance of our procedure

(Estimated-AR) with respect to the baseline (Fixed-
Class-Mean), we have performed an additional experi-
ment varying the IoU threshold (see table 1). The good
behavior of our approach is more evident when we
look for higher overlapping in the detection. With a
minimum required IoU= 0.8, Estimated-AR, in Mod-
erate subset, improves by 11,54% (from 51.1% to
57%) and with IoU= 0.9 the improvement is 105.26%
(from 1.9% to 3.9%).

In an ablation analysis shown in Fig. 10 and Table 2,
we evaluate different detector configurations and use
synthetic data to enhance even further the performance
of our detector. Data augmentation allows us to avoid
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Table 1
AP40 for different IoU values on the KITTI train90/train10 car detection experiment.

Algorithm / IoU 0.5 0.6 0.7 0.8 0.9

Easy
Fixed-Class-Mean 99.5% 99.2% 95.6% 52.2% 1.2%

Estimated-AR 99.5% 99.2% 96.3% 60.8% 3.2%

Moderate
Fixed-Class-Mean 96.4 % 95.8% 88.9% 51.1% 1.9%

Estimated-AR 96.4% 95.8% 89.3% 57.0% 3.9%

Hard
Fixed-Class-Mean 81.1% 78.3% 71.6% 39.9% 1.3%

Estimated-AR 81.1% 78.4% 72.0% 44.8% 2.9%

Fig. 5. Location of features selected by different car detectors. Top,
middle and bottom images show respectively the LDCF features of
the detector trained with 48×84, 56×98 and 64×112 pixel images.

overfitting and increase the Boosting classifier capac-
ity with deeper decision trees using a finer quantiza-
tion in car orientation. We use K=25 views whereas
in our previous approaches [24, 36] we used K = 20.
We depart from the baseline results in [24], “BAda-
Cost, K=20,“ obtained with T=1024 trees of depth
D=8, K=20 views and NA = 30000 hard negatives
(shrinkage 0.1 and f racFtrs=1/16 fraction of features
explored on each tree training). Increasing the tree
depth to D = 10 we have to regularize more (shrink-
age 0.05 and f racFtrs=1/32, less features explored on
each weak learner), but we improve AP40 by 2.9% (see

”BAdaCost+I, K=20“, Moderate results). If we now
increase the number of views to K = 25, in some
cases the AP40 decreases. This is because there are
new classes with few data (see ”BAdaCost+I“, Mod-
erate results). By including the bounding box adjust-
ment procedure described in section 4, we get slightly
better results (see ”’BAdaCost+I+BB“). On the other
hand, when we augment the data with synthetic sam-
ples we obtain a substantial improvement (see ”BAda-
Cost+DA“), greater than that achieved with the bound-
ing box adjustment, aided by the increased capacity of
the classifier and the increased number of views. Com-
bining the bounding box adjustment (BB) and the data
augmentation (DA) we get the best single classifier de-
tector (see ”BAdaCost+DA+BB“) which in the Mod-
erate examples is reporting 6.1% AP40 improvement
with respect to base line (83.2 to 89.3).

To further improve the AP of the detector we have
to take into account that a car at different resolu-
tions may not need the same features. Therefore, we
train three detectors at different base sizes: 48×84,
56×98 and 64×112 pixels. We apply these classifiers
to the image pyramid obtaining slightly better results
in the hard examples (see ”BAdaCost+DA+BB+MS“,
Hard). Finally, in the testing subset of KITTI2 (see
Fig. 11 and Table 3) the multiscale approach (”Bada-
Cost+DA+BB+MS“, Moderate) is significantly better
than the single scale approach (”BAdaCost+DA+BB“,
Moderate) increasing in 2.8% the AP40. The main rea-
son is that it gets slightly better precision and better
recall.

Since the KITTI dataset is not very large, the best
CNN based detectors use a VGG network [37] pre-
trained with ImageNet [38] and finetuned with KITTI.
Thus, they are not fully comparable to the Boosting
methods trained only with KITTI. Moreover, there are

2See BdCost+DA+BB and BdCost+DA+BB+MS at the KITTI re-
sults page: http://www.cvlibs.net/datasets/kitti/eval_object.php

http://www.cvlibs.net/datasets/kitti/eval_object.php
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Fig. 6. The car classes we use in our experiments. Note the relation between classes, i.e. car view orientation, and bounding box aspect ratios.

Table 2
Car detection ablation study in KITTI’s validation set (KITTI-train10). Key: stronger regularization (I), Bounding Box estimation (BB), Data
Augmentation (DA), and multi-scale detection (MS), average precision with n curve points (APn).

Training / Testing Algorithm
Easy Moderate Hard

AP11 AP40 AP11 AP40 AP11 AP40

train90 / train10
BAdacost, K = 20 [24] 84.8% 88.3% 82.1% 83.2% 66.9% 66.2%

BAdacost+I, K = 20 87.3% 91.9% 86.4% 86.1% 69.1% 68.8%

BAdacost+I 87.7% 92.5% 85.9% 85.9% 69.3% 68.9%

BAdacost+BB 88.3% 93.1% 86.3% 86.2% 69.2% 69.0%

BAdacost+DA 88.1% 93.0% 87.1% 88.7% 69.9% 71.5%

BAdacost+DA+BB 95.4% 96.3% 88.0% 89.3% 70.5% 72.0%

BAdacost+DA+BB+MS 93.6% 96.1% 88.1% 89.0% 70.6% 73.5%

5 10 15 20 25

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

Fig. 7. The cost matrix, C, used in the KITTI car dataset experi-
ments.

various of methods using LIDAR or the stereo image
pair data. However, we are only interested in algo-
rithms comparable with ours. In Fig. 11 and Table 3
we show the results of the top three detectors that use
a single RGB image: TuSimple [23], DeepManta [20]
and RRC [21]. The reason for their success is the use of
convolutional features adapted for the problem at hand.
However, the need for a powerful GPU could be deter-
minant in some engineering applications with limited

devices. In these cases, the Boosting algorithms pre-
sented in this paper represent a computationally effi-
cient alternative.

We have also compared the execution time of
RRC [21], one of leading deep learning-based car de-
tectors, with our Boosting-based detector in a CPU.
We have compiled the implementation of RRC3 with
OpenBLAS support4, that adds thread-based paral-
lelism to matrix operations. On average RRC takes
82 seconds to process an image, with 100% CPU us-
age (Intel Xeon E5620 2.4GHz). Such long process-
ing time is caused by the large size of KITTI images
(1242×375 pixels) and the fact that RRC doubles their
resolution to detect small cars. On the other hand, our
DA+BB+MS car detector takes on average 34 seconds
per frame when doubling the input image size (i.e. one
octave up the input size) and 6 to 12 seconds when
using the standard size. The simpler BAdaCost detec-
tor, DA+BB, takes 17 seconds per image with double
resolution and 4 seconds using the plain input images.
Our implementation also uses OpenMP parallelism.
However, our algorithm only uses 50% of the CPU.

3https://github.com/xiaohaoChen/rrc_detection
4http://www.openblas.net

https://github.com/xiaohaoChen/rrc_detection
http://www.openblas.net
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Fig. 8. Aspect ratio AP results depending on the first tree used in the estimation.
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Fig. 9. Precision-recall curves and (AP11, AP40) values for different AR estimation strategies.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

'Easy' results

BAdaCost,K=20 (84.8, 88.3)

BAdaCost+I,K=20 (87.3, 91.9)

BAdaCost+I (87.7, 92.5)

BAdaCost+BB (88.3, 93.1)

BAdaCost+DA (88.1, 93.0)

BAdaCost+DA+BB (95.4, 96.3)

BAdaCost+DA+BB+MS (93.6, 96.1)

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

'Moderate' results

BAdaCost,K=20 (82.1, 83.2)

BAdaCost+I,K=20 (86.4, 86.1)

BAdaCost+I (85.9, 85.9)

BAdaCost+BB (86.3, 86.2)

BAdaCost+DA (87.1, 88.7)

BAdaCost+DA+BB (88.0, 89.3)

BAdaCost+DA+BB+MS (88.1, 89.0)

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

'Hard' results

BAdaCost,K=20 (66.9, 66.2)

BAdaCost+I,K=20 (69.1, 68.8)

BAdaCost+I (69.3, 68.9)

BAdaCost+BB (69.2, 69.0)

BAdaCost+DA (69.9, 71.5)

BAdaCost+DA+BB (70.5, 72.0)

BAdaCost+DA+BB+MS (70.6, 73.5)

Fig. 10. Precision-recall curves and (AP11, AP40) values for the car detection ablation experiment.

Confirming the superior efficiency of Boosting-based
detection approaches.

Finally, we compare our approach with other Boost-
ing algorithms in KITTI testing (see Table 3): Sub-
Cat [16], Regionlets [17] and spLBP [39]. We use
LDCF features [33], like SubCat, whereas Regionlets
and spLBP benefit from a more discriminative set of
features. However, we cannot fairly compare the Re-
gionlets result with ours, since the KITTI experiment
is not described in the original paper. Similarly, the
spLBP paper does not describe the images used for
training their test result. With all this in mind, with re-
spect to Regionlets, our method has better precision up
to a recall of 0.7 (see Fig. 11, Moderate). Compared
with SubCat, our approach is better in the Easy subset
and with recall values below 0.7.

6.2. Cyclist detection experiments

For completeness, in this section we evaluate the
proposed technique in the cyclists detection KITTI
dataset. As for cars, shrinkage is 0.05 and 1/32 the
fraction of features to train each weak learner. There
are only 1027 cyclists examples in the KITTI-train90
subset. Given the few available training images, the
number of view classes is set to K = 5. This election
provides training data for all views, i.e. 101, 298, 155,
161 and 312 training examples respectively for class 1,
2, 3, 4 and 5. After image flipping we get 2054 training
samples (i.e. 181, 652, 318, 189, 714 respectively on
each positive class.) We train a 48 × 72 pixels model,
AR = 1.5. We start the pyramid one octave above the
actual image size. We use the parameters obtained with
the best AP: the best number of cost-sensitive trees
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Fig. 11. Car detection comparison in KITTI-testing using the evaluation server. We report (AP11, AP40) for each method.

Table 3
Car detection comparison experiment in KITTI-testing evaluation server. Best BAdaCost results are shown in bold and overall best results in
blue.

Training / Testing Algorithm
Easy Moderate Hard

AP11 AP40 AP11 AP40 AP11 AP40

train90 / testing
BAdacost, K = 20 [24] 77.9% 81.4% 67.1% 66.6% 51.2% 52.2%

BAdacost+DA+BB 84.9% 85.5% 69.5% 70.9% 59.1% 56.2%

BAdacost+DA+BB+MS 83.2% 85.2% 74.3% 73.7% 59.0% 57.8%

training / testing (Boosting) Subcat [16] 81.4% 84.1% 75.5% 76.4% 59.7% 60.6%

unknown / testing (Boosting)
Regionlets [17] 86.5% 88.7% 76.6% 77.0% 59.8% 60.5%

spLBP [39] 80.2% 81.7% 77.4% 78.7% 60.6% 61.7%

ImageNet+training/ testing (CNNs)

TuSimple [23] 90.8% 95.1% 90.3% 94.5% 82.9% 86.5%

DeepManta [20] 97.2% 98.9% 90.0% 93.5% 80.6% 83.2%

RRC [21] 90.6% 95.7% 90.2% 93.4% 87.4% 87.4%

is T=2048 (4 rounds with 32, 128, 256 and T weak
learners, respectively), tree depth is D=5, the number
of negatives per round is N=2500 and the total amount
of negatives is NA=10000. Finally, the cost matrix is
defined to weigh up gross errors between view classes.

Again, we train one detector with the mean aspect
ratio of each view class stored on the tree leaves. We
use KITTI-train90 for training and KITTI-train10 for
testing. We set the detection threshold to an IoU of 0.5,
as established in the KITTI benchmark for cyclists,
needing less precision in the bounding box than in the
cars case. Thus, it is expected for the bounding box ad-
justment procedure to have less impact in this detec-
tion problem.

We show in Fig. 12 sample training data and the
selected features. In Fig. 13 and Table 4 we display
the result of this final set of experiments. Our detec-
tions deteriorate if we include the bounding box ad-
justment procedure, ”BAdaCost+I+BB.” The reason is
that there is a lack of data to estimate the per class as-
pect ratio for each node in our decision trees. How-
ever, there is data to estimate the overall class mean as-
pect ratio. Hence the improvement with “BAdacost+I.”

Fig. 12. Features selected by BAdaCost in the cyclists detection
problem (top left) and sample training images (rest). Note that most
of the features are around the rider and the wheels.
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When we augment the data with synthetic samples,
“BAdaCost+DA,” we get better AP40 than “BAda-
Cost+BB” and “BAdaCost+I” in the Moderate and
Hard cases. However, the new data worsen the esti-
mation in the Easy group. By combining the bound-
ing box adjustment (BB) and the data augmentation
(DA) we get the best single classifier detector, “BAda-
Cost+DA+BB,” which in the Moderate examples is re-
porting 2.7% AP40 improvement with respect to base
line, from 80.4 to 83.1.

Finally, to improve AP40, we train three detectors
at different base sizes: 48×72, 56×84 and 64×96. We
use these classifiers with an image pyramid obtaining
and improvement greater than 6% with respect to the
base line in all cases, “BAdaCost+DA+BB+MS.”

As in the car case, the best CNN based detectors
with cyclists that use only RGB images [21, 23, 40] use
a pretrained VGG network on ImageNet and finetune
it with the KITTI data. It makes these results no fully
comparable to the Boosting ones trained only on the
KITTI dataset. In the cyclists, because of the lack of
training data, almost all methods take advantage of the
LIDAR measures and/or the stereo pairs available. We
use only RGB images data. In Table 5 we show the
results of the three best published cyclists detectors on
KITTI testing using only RGB information: RRC [21],
TuSimple [23] and SubCNN [40].

In Table 5 we cite [17] the top Boosting result in
the KITTI evaluation server. However, we cannot fairly
compare this result with ours, since the KITTI experi-
ment is not described in the paper.

In summary, our results in this section support the
use of new techniques borrowed from the deep learn-
ing literature for training Boosting based detectors.

7. Conclusions

Detection algorithms have evolved over time by
changing various components of their pipeline. Some
of these improvements, however, have been exploited
only in the context of modern deep neural nets. In this
paper we have improved the performance of Boosting-
based detectors by using data augmentation, refining
the detection bounding box, and using multi-scale pro-
cessing. This is a relevant result in the construction
of detectors, given the computational efficiency of this
family of algorithms.

In the experiments we show that Boosting-based
approaches significantly improve their performance
with respect to the multi-class baseline Boosting

scheme [24] when using the new training techniques.
We achieve an improvement of 7.1% and 5% respec-
tively in the AP40 of the car and cyclist KITTI bench-
marks. On the other hand, the our Boosting-based de-
tectors are between 2X and 3.5X faster than their deep
learning-based counterpart, at the expense of a signifi-
cant decrease in precision.

In spite of the remarkable accuracy achieved by
deep learning-based detectors, we believe there is still
room for research in approaches based on more effi-
cient traditional machine learning techniques and their
application in different problems [41]. In the future we
will investigate better box regression algorithms, the
use of efficient and more discriminative image features
and detection strategies better than the brute force slid-
ing window.
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Fig. 13. Precision-recall curves and (AP11, AP40) for the cyclist detection ablation study.

Table 4
Cyclist detection ablation study. Key: Stronger regularization (I), Bounding Box estimation (BB), Data Augmentation (DA), and multi-scale
detection (MS), average precision with n curve points (APn).
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