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Iago Suárez1,2[0000−0003−4006−4378], Ghesn Sfeir1[0000−0002−6600−9409], José M.
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Abstract. Efficient matching of local image features is a fundamental
task in many computer vision applications. Real-time performance of
top matching algorithms is compromised in computationally limited de-
vices, due to the simplicity of hardware and the finite energy supply.
In this paper we present BELID, an efficient learned image descriptor.
The key for its efficiency is the discriminative selection of a set of image
features with very low computational requirements. In our experiments,
performed both in a personal computer and a smartphone, BELID has
an accuracy similar to SIFT with execution times comparable to ORB,
the fastest algorithm in the literature.

Keywords: Computer Vision for smartphones · Feature descriptors ex-
traction · Learned descriptors · Boosting

1 Introduction

Local image representations are designed to match images in the presence of
strong appearance variations, such as illumination changes or geometric trans-
formations. They are a fundamental component of a wide range of Computer
Vision tasks such as 3D reconstruction [1,20], SLAM [14], image retrieval [16],
tracking [17], place recognition [15] or pose estimation[31]. They are the most
popular image representation approach, because local features are distinctive,
view point invariant, robust to partial occlusions and very efficient, since they
discard low informative image areas.

To produce a local image representation we must detect a set of salient im-
age structures and provide a description for each of them. There is a plethora of
very efficient detectors for various low level structures such as corners [18], seg-
ments [28], lines [23] and regions [11], that may be described by real valued [10,3]
or binary [5,19,8] descriptors, being the binary ones the fastest. In this paper we
address the problem of efficient feature description.
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Although the SIFT descriptor was introduced twenty years ago [9,10], it is
still considered the “golden standard” technique. The recent HPatches bench-
mark has shown, however, that there is still a lot of room for improvement [2].
Modern descriptors based on deep models have boosted the mean Average Preci-
sion (mAP) in different tasks [2] at the price of a sharp increase in computational
requirements. This prevents their use in hardware and battery limited devices
such as smartphones, drones or robots. This problem has been studied exten-
sively and many local features detectors [18,28,19] and descriptors [8,5,8] have
emerged. They enable real-time performance on resource limited devices, at the
price of an accuracy significantly lower than SIFT [32].

In this paper we present an efficient descriptor. Our features use the integral
image to efficiently compute the difference between the mean gray values in a
pair of image square regions. We use a boosting algorithm [26] to discriminatively
select a set of features and combine them to produce a strong description. In our
experiments we show that this approach speeds up the computation and achieves
execution times close to the fastest technique in the literature, ORB [19], with
an accuracy similar to that of SIFT. Specifically, it provides an accuracy better
than SIFT in the patch verification and worse in the image matching and patch
retrieval tasks of the HPatches benchmark [2].

2 Related work

SIFT is the most well-known descriptor algorithm [10]. It is widely used because
it has a good performance in many Computer Vision tasks. However, it is com-
putationally quite demanding and the only way to use it in a real-time system
is using a GPU [4].

A number of different descriptors, such as SURF [3], BRIEF [5], BRISK [8]
and ORB [19], have emerged to speed up SIFT. BRIEF, BRISK and ORB use
features based on the comparison of pairs of image pixels. The key for their
speed is the use of a limited number of binary comparisons. BRIEF uses a fixed
size (9× 9) smoothing convolution kernel before comparing up to 512 randomly
located pixel value pairs (see Fig. 1). BRISK uses a circular pattern (see Fig. 1),
smoothing the image with gaussian filters with increasing standard deviation
the further away from the center. The ORB descriptor is an extension of BRIEF
that takes into account different orientations of the detected local feature. In
this case the smoothing is done with an integral image with a fixed sub-window
size. It uses a greedy algorithm to uncorrelate the chosen pixel pairs (see Fig. 1).
The main drawback of these methods is that they trade accuracy for speed,
performing significantly worse than SIFT.

Descriptors based on learning algorithms may further improve the perfor-
mance. To this end they learn the descriptor hyper parameters, DAISY [25],
and select the most discriminative features using Boosting, BinBoost [26], or
Convex Optimization [22]. More recently, the use of Deep Learning has enabled
end-to-end learning of descriptors. All CNN-based methods train using pairs or
triples of cropped patches. Some train Siamese nets [6], use L2 and hard negative
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Fig. 1. Visualization of the sampling pairs of pixel locations (first row) and spatial
weight heat maps (second row) employed by BRIEF, BRISK, ORB, BinBoost and our
BELID trained on the Notre Dame patches dataset. BELID learns a well distributed set
of point pairs giving most importance to the center area, making it close to a gaussian
weight distribution. BRIEF, BRISK, ORB and BinBoost images taken from [26].

mining [24] or modified triplet-based loss [13]. Other methods optimize a loss
related to the Average Precision [7] or an improved triplet loss to help focus on
hard examples in training [29]. These methods have improved by a large margin
the performance of SIFT in the HPatches benchmark. However, all of them incur
in a much larger computational cost.

In this paper we present BELID, a descriptor trained with Boosting that
is able to select the best features for the task at hand. Like BRIEF, BRISK
and ORB, our features are based on differences of gray values. However, in our
descriptor, we compute the difference of the mean gray values within a box. The
box size represents a scale parameter that improves the discrimination. Another
important difference is that in BELID the search for the best features is guided
by a discriminative objective.

3 Boosted Efficient Local Image Descriptor (BELID)

In this section we present an efficient algorithm for describing image local regions
that is as fast as ORB and as accurate as SIFT. The key for its speed is the
use of few, fast and discriminatively selected features. Our descriptor uses a set
of K features selected using the BoostedSCC algorithm [21]. This algorithm is
a modification of AdaBoost to select the weak learner (WL) that maximizes
the difference between the True Positive Rate (TR) and the False Positive Rate
(FP).

Let {(xi,yi, li)}Ni=1 be a training set composed of pairs of image patches,
xi,yi ∈ X , and labels li ∈ {−1, 1}. Where li = 1 means that both patches
correspond to the same salient image structure and li = −1 if different. The
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Fig. 2. Descriptor extraction workflow: To describe an image patch BELID effi-
ciently calculates the mean gray value of the pixels in the red and blue boxes in the left.
Next, for each pair of red-blue boxes (weak learner) we subtract the red box average
gray value from the blue one average, obtaining f(x). We apply a set of thresholds
to these values obtaining h(x) and finally we multiply by matrix B, to produce the
descriptor D(x).

training process minimizes the loss

LBSCC =

N∑
i=1

exp

(
−li

K∑
k=1

αkhk (xi)hk (yi)

)
, (1)

where hk(z) ≡ hk(z; f, T ) corresponds to the k-th WL that depends on a feature
extraction function f : X → R and a threshold T . Given f and T we define our
weak learners by thresholding f(x) with T ,

h(x; f, T ) =

{
+1 if f(x) ≤ T
−1 if f(x) > T

(2)

3.1 Thresholded Average Box weak learner

The key for efficiency is selecting an f(x) that is both discriminative and fast to
compute. We define our feature extraction function, f(x),

f(x; p1,p2, s) =
1

s2

 ∑
q∈R(p1,s)

I(q)−
∑

r∈R(p2,s)

I(r)

 , (3)

where I(t) is the gray value at pixel t and R(p, s) is the square box centered
at pixel p with size s. Thus, f computes the difference between the mean gray
values of the pixels in R(p1, s) and R(p2, s). The red and blue squares in Fig. 2
represent, respectively, R(p2, s) and R(p1, s). To speed up the computation of
f , we use the integral image S of the input image. Once S is available, the sum
of gray levels in a square box can be computed with 4 memory accesses and 4
arithmetic operations.

Detectors usually compute the orientation and scale of the local structure.
To make our descriptor invariant to euclidean transformations, we orient and
scale our measurements with the underlying local structure.
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3.2 Optimizing weak learner weights

The BoostedSCC algorithm selects K weak learners with their corresponding
weights. The loss function optimized by BoostedSCC in eq. 1 can be seen as a
metric learning approach in which the metric matrix A is diagonal

LBSCC =

N∑
i=1

exp

−lih(xi)
>

α
2
1

. . .

α2
K


︸ ︷︷ ︸

A

h(yi)

 , (4)

where h(w) is the vector with the responses of the K weak learners for the image
patch w. In this case we are not considering the dependencies between different
weak learners responses. At this point the BELID-U (un-optimized) descriptor

of a given image patch w is calculated as D(w) = A
1
2 h(x), where A

1
2 is such that

A = A
1
2 A

1
2 .

Further, estimating the whole matrix A improves the similarity function by
modeling the correlation between features, s(x,y) = h(x)>Ah(y). FP-Boost [26]
estimates A minimizing

LFP =

N∑
i=1

exp

−li∑
k,r

αk,rhk (xi)hr (yi)

 =

N∑
i=1

exp
(
−lih(x)>Ah(y)

)
. (5)

It uses Stochastic Gradient Descent to estimate a symmetric A. Jointly optimiz-
ing A and hi(x) from scratch is difficult. Thus the algorithm starts from the K
weak learners and α’s found by BoostedSCC. This second learning step is quite
fast because all weak learners responses can be pre-computed.

As in the case of the un-optimized descriptor we have to factorize the similar-
ity function s(x,y) to compute the independent descriptors for x and y. Given
that A is a symmetric matrix we can use its eigen-decomposition selecting the D
eigenvectors with largest eigenvalues

A = BWB> =

D∑
d=1

wdbdb
>
d , (6)

where W =diag([w1, · · · , wD]), wd ∈ {−1, 1}, B = [b1, · · · ,bD] ,b ∈ RK ,
and D ≤ K. The final descriptor of a given image patch w is given by D(w) =
B>h(w) (see Fig. 2). It will be denoted using the final dimension D, as BELID-D
(e.g. BELID-128 when D = 128).

4 Experiments

In our experiments we use the popular dataset of patches 4 from Winder et
al. [30] for training. It consists of 64 × 64 cropped image patches from three

4 http://matthewalunbrown.com/patchdata/patchdata.html

http://matthewalunbrown.com/patchdata/patchdata.html
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different scenes: Notre Dame cathedral, Yosemite National Part and Liberty
statue in New York. The patches are cropped around local structures detected
by SIFT.

We compare the performance using three measures:

– FPR-95. This is the False Positive Rate at 95% of recall in a patch verifi-
cation problem (i.e. given two patches deciding if they are similar - positive
class - or not). When we develop a descriptor, we want to be able to match
most of the local structures, lets say a 95% of recall, but with the lowest pos-
sible number of false positives. Thus, a descriptor is better the lower FPR-95
it achieves in the patch verification problem.

– AUC. Area Under the ROC Curve in a patch verification problem. It pro-
vides a good overall measurement, since it considers all the operation points
of the curve, instead of just one as in the FPR-95 case.

– mAP. Mean Average Precision, as defined in the HPatches benchmark [2]
for each of the three tasks: patch verification, image matching and patch
retrieval.

We have implemented in Python BoostedSCC, FP-Boost and the learning
and testing part of the Thresholded Average Box weak learner of Sec. 3.1. For
optimizing the A matrix we use the Stochastic Gradient Descent algorithm with
a fixed learning rate of 10−8 and a batch size of 2000 samples. We have also
implemented in C++, using OpenCV, the descriptor extraction algorithm to
process the input images (i.e. not cropped patches). We use this implementation
to measure the execution time of BELID in different platforms.

4.1 Patch verification experiments

Here we first explore the effect of the number of dimensions, K, in BELID-U and
D in BELID (optimized) descriptors. In Fig. 3 we show the AUC and FPR-95
values as a function of the number of dimensions (”N Dimensions”). In the case
of BELID, we use K = 512 weak learners and compute B to reduce from 512
dimensions to the one given in the plots.

We train using a balanced set of 100K positive and 100K negative patch
pairs from the Yosemite sequence. The testing set comprises 50K positive and
50K negative pairs from the Liberty statue. We first run BoostedSSC selecting
512 weak learners. We change the number of dimensions of the BELID-U curve
in Fig. 3 by removing the last weak learners from this initial set. For BELID,
we discard the last columns of B, that correspond to the scaled eigen-vectors
associated with the smallest eigenvalues.

We can see in Fig. 3 that the boosting process selects features that, up to
one point, contribute to the final discrimination. After 128 weak learners the
improvement provided by each new feature is very small. After 256 we do not
get any improvement at all, which means that the last ones are redundant. The
performances of the optimized BELID are always better than those of BELID-
U. This proves the interest of the optimization process. BELID gets the lowest
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Fig. 3. BELID-U and BELID, training and testing, AUC (”Area Under the ROC
Curve”) and FPR-95 (”Error”) as a function of the number of dimensions in a patch
verification problem.

FPR-95 at 128 dimensions that, interestingly, is the same number of dimensions
used by SIFT. In consequence, BELID-128 is our best descriptor.

In the next experiment we compare our descriptor with SIFT, the ”golden
standard”, and ORB, a representative of the descriptors developed for computa-
tional efficiency. We also evaluate LBGM [27], a descriptor using more informa-
tive, but computationally expensive, features based on the gradients orientation
and the optimization in Sec. 3.2 to estimate A. For these features we use the im-
plementations in OpenCV. We have trained in the 200K patch balanced set from
Notre Dame and tested in the 100K patch balanced set from the Liberty statue
datasets (see Fig. 4 left). We have also trained in the 200K patch balanced set
from Yosemite sequence and tested with the 100K patch balanced set from Notre
Dame (see Fig. 4 right). Fig. 4 shows the ROC curves for the testing sets. In
terms of accuracy, ORB is the worst descriptor. BELID-128 is better than SIFT
and marginally worse than LBGM and BinBoost, both using the same boosting
scheme for selecting gradient-based features. Comparing different versions of our
algorithm, we can see that BELID-U gets slightly higher FPR-95 values than
BELID (as we have seen in the previous experiments) when training and testing
sets are from the same domain (Notre Dame/Liberty) and a comparable FPR-95
when they are from different ones (Yosemite/Notre Dame).

4.2 Experiments on the Hpatches dataset

The recent HPatches benchmark [2] solves some of the shortcomings of previous
data sets in terms of data and task diversity, evaluation metrics and experimental
reproducibility. The benchmark provides patches taken from images of different
scenes under real and varying capturing conditions, that are tested in patch
verification, image matching and patch retrieval problems. We have trained with
the balanced 200K patches pairs from Notre Dame and evaluated on the testing
HPatches dataset using the Python code provided by the authors.
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Fig. 4. Test sets ROC curves for the patch verification experiments.

Fig. 5 shows the results of various BELID configurations and those of other
competing approaches obtained with the HPathces tool. In the patch verification
problem, the one we use to optimize our descriptor, we get the same situation
of the previous experiments. All BELID configurations are better than SIFT,
69.57 vs 63.35, and much better than ORB, 58.21. However, in the other two
tasks our descriptor is falling behind SIFT. This is an expected result since we
are not optimizing our descriptor for these tasks. Altogether, depending on the
configuration considered, BELID may provide results close to SIFT and better
than ORB in all tasks.

We have added to Fig. 5 Hardnet [13], a representative CNN-based descriptor.
Hardnet beats by a large margin all handcrafted (BRIEF, ORB, SIFT) and
Boosting-based descriptors (BinBoost [26], BELID), but it has a much higher
computational and energy requirements.
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Fig. 5. Comparison in the HPatches dataset for three different tasks.
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4.3 Execution time in different platforms

In the last experiment we test our C++ implementation of BELID processing
images (i.e. no cropped patches) in a desktop CPU, Intel Core i7-6700HQ at
2.60GHz and 16GB RAM, and in the limited CPU, Exynox Octa 7870 at 1.59
GHz and 2GB RAM of a Samsung Galaxy J5-2017 smartphone. We report the
execution time in the Mikolajczyk [12] dataset composed by 48 800×640 images
from 8 different scenes. We detect a maximum of 2000 local structures per image
with SURF.

We compare the execution time with other relevant descriptors in the OpenCV
library. To this end we use the C++ interface. Specifically we run ORB [19],
SIFT [10], LBGM [27] and BinBoost [26]. In Table 1 we show the size of the
descriptors in terms of the number of components that can be floating point
numbers (f) or bits (b) and the average execution time per image in the experi-
ment.

In terms of speed, BELID-U (without optimization) is comparable to ORB.
In fact, BELID-U is as fast as ORB in desktop (0.41 ms vs 0.44 ms) and faster
in the limited CPU (2.54 ms vs 6.49 ms). This was expected since both use as
features a set of gray value differences. LBGM uses the same feature selection
algorithm as BELID, but with slower features. Thus, this descriptor requires the
same processing time as SIFT in the desktop setup (19.77 ms vs 22.22 ms) with
a slightly better FPR-95 (see section 4.1).

BELID-128 takes only 3.08 ms in the desktop CPU, around 7× the time of
BELID-U and ORB. In the Exynos Octa smartphone CPU the time of BELID-
128 is also around 7× slower than BELID-U, as expected.

These results support the claim that our descriptor if a faster alternative to
SIFT that is able to run in real-time on low performance devices, while preserving
the accuracy.

Table 1. Average execution time per image of various descriptors.

Size Intel Core i7 Exynox Octa

SIFT 128f 22.22 ms 163.2 ms

ORB 256b 0.44 ms 6.49 ms

LBGM 64f 19.77 ms 64.24 ms

BinBoost 256b 12.57 ms 42.39 ms

BELID-512 512f 10.48 ms 61.47 ms

BELID-128 128f 3.08 ms 17.13 ms

BELID-U 512f 0.41 ms 2.54 ms

5 Conclusion

In this paper we presented BELID, an efficient learned image descriptor. In our
experiments we proved that it has very low computational requirements, similar
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to those of ORB, the fastest descriptor in the literature. This is due to the use
of very fast image features, based on gray value differences computed with the
integral image. In terms of accuracy BELID is better than ORB and close to
SIFT, the golden standard reference in the literature. We believe this is due to
the discriminative scheme used to select the image features and the possibility
of learning the best smoothing filter scale, represented in BELID by the feature
box sizes. Our feature selection scheme optimizes a patch verification problem.
This is why BELID achieves better accuracy than SIFT in the HPatches patch
verification task and worse in the image matching and patch retrieval tasks.

As discussed in the introduction, feature matching is required in many other
higher level computer vision tasks. In most of them it is a mid-level process often
followed by model fitting, e.g. RANSAC. This robust fitting step fixes the errors
occurred in the matching procedure. This is possibly one of the reasons why SIFT
is still the most widely used descriptor. Although it is not the best performing
approach in terms of accuracy, it provides a reasonable trade-off between accu-
racy and computational requirements. In the context of real-time performance
on computationally limited devices, BELID represents also an excellent trade-off.

There are various ways to improve the results in this work. First we may
change the feature selection process to optimize the performance not only in
a patch verification task but also in image matching and patch retrieval. We
may also binarize the output descriptor to decrease the model storage require-
ments and achieve higher matching speed. Finally, we also plan to improve the
implementation to optimize speed in different types of processors.
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