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Abstract

Deepfake detection has progressively become a topic of
interest in recent years due to the proliferation of au-
tomated facial forgery generation techniques that are
able to produce manipulated media indistinguishable
for the human eye. One of the most difficult aspects
in deepfake detection is generalization to unseen ma-
nipulation techniques, which is a key factor to make a
method useful in real world applications. In this pa-
per, we propose a new multi-task network termed SFA,
which leverages spatiotemporal features extracted from
video inputs to provide more robust predictions com-
pared to image-only models, as well as a face alignment
task that helps the network to identify anomalous fa-
cial movements in the temporal dimension. We show
that this multi-task approach improves generalization
compared to the single-task baseline, and succeeds in
producing results on par with the current state-of-the-
art using different cross-dataset and cross-manipulation
benchmarks.

1 INTRODUCTION

Over the last decade, deep learning has proven to
be an exceptionally useful tool to solve a wide vari-
ety of problems. One of these applications includes
generative models [10], which can produce novel
data from a learned distribution. “Deepfakes” are
images or videos of human faces generated or ma-
nipulated from real data by deep learning tech-
niques. With the increasing quality of these manip-
ulations and the ease of use for the general public,
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they have raised high concerns due to the serious
risk of malicious misusage they convey.

Thus, deepfake detection has quickly become a
popular topic of research. Early works try to iden-
tify forgery artifacts in the pixel or frequency do-
mains [17, 22, 26], but perform poorly on cross-
dataset benchmarks. Other methods try to gener-
ate pseudo-fakes [5, 19, 29] to improve generaliza-
tion, but can only detect spatial artifacts and miss
temporal clues useful to detect manipulated videos
that have been generated frame-by-frame.

Recently, many works have also used spatiotem-
poral information from video data to detect arti-
facts in the temporal dimension [14, 13, 38, 44].
Although there is some work on deepfake detec-
tion using facial landmarks [32], there is a lack of
research to leverage facial alignment tasks to de-
tect anomalous facial movements by modeling fa-
cial movement over time.

In this work, we develop a simple but effec-
tive multi-task network termed SFA (Spatiotempo-
ral Face Alignment for deepfake detection), which
combines spatiotemporal features extracted with a
video backbone with face alignment, showing how
both tasks can work together and lead to better
generalization to unseen manipulations. To track
the movement of the face in the video, we train
the network to create motion heatmaps [6]. This
is a novel approach in deepfake detection, as pre-
vious literature usually employs 2D landmark co-
ordinates obtained by an external network to train
recurrent or graph-based networks [32]. The main
advantage of our approach is that landmark anno-
tations are not needed at inference time.

In summary, the main contributions of this paper
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are as follows:

1. We combine deepfake detection with face
alignment in videos, using both tasks to im-
prove generalization to unseen manipulation
methods not present in the training dataset.
In contrast with previous work, we train the
network to perform face alignment instead of
relying on landmark annotations at inference
time.

2. We compare single- and multi-channel motion
heat maps to perform face alignment on
videos.

2 RELATED WORK

Since the uprising of deep learning-based meth-
ods that can easily and realistically manipulate the
identity and appearance of a face in images and
videos [9, 21, 27], the field of deepfake detection
has also developed significantly. One of the more
desirable properties of forgery detection methods
is the ability to generalize well against manipula-
tion methods not seen in the training data. Some
studies [40, 41] hint that a key factor in achieving
good generalization lies in avoiding the use of fea-
tures that may encourage overfitting to particular
manipulation methods of the training dataset, such
as the identity of the subject. Thus, generalizable
methods learn to discard facial features that are
not relevant to the task of deepfake detection.
The methods can be categorized into image
and video-based models. Image-based methods
include [19, 24, 43], which try to focus the at-
tention of the network on certain parts of the
face that are more likely to contain forgery arti-
facts. Some methods leverage frequency informa-
tion to complement or substitute spatial informa-
tion [23, 26, 30, 37] and are more robust to video
compression. Another popular approach is to use
contrastive learning techniques [11, 12, 16, 17, 31]
to improve generalization against unseen manipu-
lation methods. Cao et al. [3] train an auto-encoder
network to reconstruct only real faces, focusing on
anomalies found in the decoder features to detect
deepfakes. Other methods generate pseudo-fakes as
training data [5, 19, 29, 38] by blending 2 images
of the same person or even the same image with a
slightly modified version of itself. They are more

difficult to detect, forcing the network to extract
more robust features.

On the other hand, some methods use video data
to extract more informative spatiotemporal fea-
tures or to track some biological signals over time
inherent to real faces, such as heart rate [7] or ac-
tion units [1, 33]. Sun et al. [32] use a sequence of
facial landmarks in a video clip to detect anoma-
lous movements generated from deepfakes. Halias-
sos et al. [13, 14] employ pre-trained networks on
audio-visual data to generate robust features suit-
able to detect manipulated videos. Some meth-
ods [38, 42, 44] show the proper training method-
ology of spatiotemporal deepfake detectors, since
spatial information is generally more dominant and
easy to spot in deepfake detection, and the tempo-
ral features tend to be ignored by the network if
trained naively. Xu et al. [39] leverage a pre-trained
image model and adapt it to video data by stacking
several frames into a thumbnail image.

Similarly to [32], we incorporate facial landmark
information to detect manipulated videos. How-
ever, relying on 2D landmark coordinates only as
in [32] can greatly decrease the ability to gener-
alize to unseen manipulations, since the network
easily overfits to the particular fake movements
of the training data. Instead, we use face align-
ment as a complementary task in a video model to
act as regularization and help the network extract
more useful features for cross-dataset and cross-
manipulation scenarios. Another difference is that
this task is incorporated into the network, so land-
mark annotations are not needed at inference time.

3 METHOD

Our framework consists of a multi-task video trans-
former network that leverages spatiotemporal fea-
tures extracted from videos, coupled with a face
alignment task that improves the single-task base-
line. Firstly, the new task helps the network pro-
duce a set of more informative feature maps for
deepfake detection, since the focus is placed on spe-
cific parts of the face, acting as regularization. Sec-
ondly, it encourages the network to pay more atten-
tion to the temporal dimension, since it must track
the position of the landmarks throughout the video
clip.



3.1 Classification

An overview of our model is shown in Fig. 1. The
input video frames F € REXTXHXW are split into
non-overlapping 3-dimensional cubes and projected
into tokens x € RP*P where C refers to color
channels, T is the number of frames, H and W are
frame height and width, respectively, P = % . % . %
is the number of tokens and D is the token dimen-
sion.

A set of task tokens Xiqsr € RUTLIXD are ap-
pended to x, one for the classification task and L
for the face alignment task (one per facial land-
mark). This new set of tokens x’ = xUxX;44 is then
fed into K sequential transformer layers. From the
output of the last layer, we extract the subset of
transformed task tokens x} ;.

Finally, the transformed classification token in
X, . 15 fed into a fully connected layer that out-
puts the probability that the input video contains
a deepfake. This task is optimized with a binary
cross-entropy loss, Lpce.

3.2 Face alignment

Our framework incorporates a face alignment task
that helps the network identify the structure of the
face and track its movement in the input video
clip. We represent this movement via motion
heatmaps [6], which are a temporal aggregation of
single-frame probability maps of facial landmark lo-
cations. The direction of this movement can be
encoded with multi-channel heatmaps (see Fig. 2).
We compare single and multi-channel approaches
in our ablation study.

Given a set of L landmarks, we define a set of
L task tokens, each representing the movement of
a facial landmark in the video. At the output of
the last encoder layer, we extract the L tokens and
perform a linear projection followed by a sigmoid
activation that converts each token into a motion
heatmap H € RM*H'XW’ ‘where M is the number
of motion channels, and H' and W' are height and
width of the heatmap.

These heatmaps are
intersection-over-union loss:

optimized via the
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where N is the number of video clips in a training
batch, and y,; € RM*XH'*W" and p,, € RM*xH'xW’
are, respectively, the ground-truth and predicted
motion heatmaps for the l-th landmark in the n-th
video of the input batch.

The final loss is the sum of the classification and
heatmap regression losses, £ = Lpce + ALjow, Where
A is the weight of the heatmap regression task, and
is set empirically.

4 EXPERIMENTS

4.1 Experimental settings

Datasets. To clearly assess the performance of
deepfake detection models, it is important to use
manipulation methods not seen in the training
data. The most common cross-dataset benchmark
used in the literature sets FaceForensics++ [27]
as the training dataset. It consists of 1000 videos
obtained from YouTube and 4 manipulation meth-
ods (Deepfakes®, FaceSwap?, Face2Face [35], Neu-
ralTextures [34]) applied to them, for a total of 4000
manipulated videos.

For cross-dataset evaluation, we employ
CelebDF-v2 [21], which consists of YouTube
videos tampered with a more advanced face swap-
ping algorithm for a total of 518 testing videos;
and DFDCP [9], with 780 testing video clips gen-
erated with two in-house face swapping methods
and randomly subjected to data augmentation.

As cross-manipulation datasets, we use
FaceShifter [18], which applies a two-stage
occlusion-aware face swapping network, and
DeeperForensics-1.0 [15], which uses a Vari-
ational Auto-Encoder that generates face-swap
images as well as optical flow information, im-
proving temporal continuity. Both benchmarks
are based on the same real testing videos as
FaceForensics++.

Evaluation metrics. Following previous work, we
report the video level area under the receiver oper-
ating characteristic curve (AUC) in our tables, that
is, the average AUC between all the clips in a video.

I https://github.com/deepfakes/faceswap
2 nttps://github. com/MarekKowalski/FaceSwap
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Fig. 1: Overview of our method. A pre-trained video transformer encoder [2] is given a set of learnable
task tokens, which are used for a deepfake detection task and a motion heatmap regression task.
The latter helps to extract more discriminative features for better generalization as well as forcing
the network to focus on the movement of the face in the video input, leveraging temporal clues

to detect anomalous facial movements.
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Fig. 2: Ground-truth motion heatmap generation
process for different number of channels
M [6]. For visual clarity, heatmaps for all
facial landmarks are shown together.

This ensures a fair comparison between image and
video-based methods.

Implementation details. We first detect faces on
each video with the RetinaFace detector [8], and ex-
pand each bounding box by a factor of 1.3 around
its center. We align the faces to the center of the
frame by moving the center of the bounding box to
the landmark corresponding to the tip of the nose
detected by RetinaFace. To obtain the landmarks
used for generating the ground-truth heatmaps in
Eq. 1, we employ a state-of-the-art face alignment
method [25]. The transformer encoder used in our
experiments is pre-trained on a large-scale facial
video reconstruction task [2]. Our network pro-
cesses video clips of 16 consecutive 224 x 224 frames,
and we use H' = W’ = 64 in Eq. 2 as the output
size of our heatmap regression head. The weight
of the heatmap regression loss function A is set to
1.0. We use a batch size of 8 and over-sample the
real class on the training set to match the number
of fake videos. We use the Adam optimizer with
a maximum learning rate of 7.07 - 1075, obtained
empirically, and a cosine annealing learning rate
scheduler with linear warm-up. Data augmentation
includes hue and brightness manipulation, affine



transformations, image compression, Gaussian blur
and cutout, applied uniformly to all frames of a
video clip.

4.2 Comparison with the
state-of-the-art

Table 1 shows a comparison of our method with
several state-of-the-art image (first half) and video-
based (second half) deepfake detectors. All meth-
ods are trained on FaceForensics+4 high-quality
subset (FF++ HQ), and tested on CelebDF-
v2 (CDF), Deepfake Detection Challenge Preview
(DFDCP), FaceShifter (FSh) and DeeperForensics-
1.0 (DFo) datasets. Note that some of the methods
are trained on pseudo-fakes instead of the original
fake videos of FF++-. Best and second best results
are shown in bold and underlined, respectively.

We can see that our method can achieve very
competitive results in all testing datasets, and even
establishes new state-of-the-art on FaceShifter.
This shows that modeling the movement of the face
as a high-level source of information incorporated
in the model has a positive effect on the deepfake
detection task. Overall, results show the general-
ization capabilities of our method to unseen do-
mains and manipulation techniques not seen in the
training dataset.

4.3 Ablation study

(a) Single-task. (b) Multi-task.

Fig. 3: Visualization of the attention map of the
class token for single- and multi-task net-
works in a manipulated video from Face-
Forensics++. The baseline network (3a)
fails to recognize the deepfake. The multi-
task approach (3b) focuses on different parts
of the face and correctly classifies it.

Table 2 shows the performance of our method
when using different number of channels in the
motion heatmaps. First, compared to the base-
line detector, which includes only a classification
token and lacks the face alignment task, we can
see that adding the heatmap regression task consis-
tently improves the average results considering all
test datasets. This highlights the usefulness of the
face alignment task, as the network is forced to ex-
tract more robust features and track the movement
of the face in the input video. This is important to
detect forgery clues in the temporal dimension, as
deepfake videos are usually crafted frame-by-frame
without considering any temporal consistency.

This results also show that using heatmaps
that model the direction of the movement (M=2)
slightly improves the single-channel approach
(M=1). This is notable in DFDCP, where videos
have been altered with several augmentations, such
as reduced encoding quality and image downsam-
pling. Since the pixel-level data of these videos is
less informative, having access to a high-level repre-
sentation of the face can improve the performance
of the network. With more motion channels, the
face alignment task becomes more difficult, and
the network is forced to increase its importance.
In contrast, deepfake videos in CDF can be easily
spotted by looking at spatial discrepancies in the
face, such as color and resolution differences caused
by the face swapping procedure, and high-level rep-
resentations become less useful.

Additionally, we show in Fig. 3 the effect of the
face alignment task on the attention maps of the
classification token aggregated over the temporal
dimension. We can see that, when the model is
trained with both tasks, the attention of the net-
work to relevant parts of the face is more notorious.
This is a result of the regularization effect of the
face alignment task, as the network is more likely
to extract features more related to the structure of
the face, disregarding irrelevant parts of the input
frames.

5 CONCLUSIONS AND FUTURE
WORKS

In this paper, we present a novel approach to the
challenging task of detecting deepfakes. We showed
how a simple framework can leverage face align-



Tab. 1: Comparison with the state-of-the-art in terms of video-level AUC (%). All models are trained
on FaceForensics++ HQ and evaluated on CelebDF-v2 (CDF), Deepfake detection challenge
preview (DFDCP), FaceShifter (FSh) and DeeperForensics (DFo). * indicates results computed
by us with official model weights, otherwise taken from [38, 39].

Method Cross-dataset Cross-manipulation Ave.
CDF DFDCP FSh DFo
FWA [20] 69.50 - 65.50 50.20 -
PatchForensics [4] 69.60 - 57.80 81.80 -
Xception [27] 73.70 - 72.00 84.50 -
CNN-aug [36] 75.60 - 65.70 74.40 -
Multi-Att [43] 75.70 - 66.00 77.70 -
Face X-Ray [19] 79.50 80.92 92.80 86.80 85.01
SLADD [5] 79.70 - - - -
CNN-GRU [28] 69.80 - 80.80 74.10 -
LipForensics [14] 82.40 - 97.10 97.60 -
ISTVT [42] 84.10 74.20 99.30 98.60 -
FTCN [44] 86.90 74.00 98.80 98.80 89.63
RealForensics [13] 86.90 - 99.70 99.30 -
AltFreezing [38] 89.50 70.91 * 99.40 99.30 89.78
TALL-Swin [39] 90.79 - 99.67 99.62 -
SFA (ours) 89.52 80.58 99.84 99.24 92.30

Tab. 2: Ablation study with different number of channels of motion heatmaps M. All metrics represent
video-level AUC (%).

Cross-dataset Cross-manipulation

Method Avg.
CDF DFDCP FSh DFo

Baseline  87.17 78.45 99.55 98.50 90.92

M=1 89.70 79.84 99.82 99.17 92.13

M=2 89.52 80.58 99.84 99.24 92.30




ment on videos to improve the generalization abil-
ity of a baseline detector.

Since face alignment is a useful tool for locating
the face and its different parts in the image, we
believe that this work can be further extended to
improve the interpretability of the deepfake detec-
tor by accurately showing which parts of the face
have been manipulated. This could also be used as
a complement to pseudo-fake generation techniques
extended to videos.
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ETHICAL IMPACT STATEMENT

Manipulated media derived from deepfake genera-
tion technologies present a serious risk to society
as they can be used for malicious purposes, such
as face spoofing or identity theft. Because of the
fast development of Al it is very difficult to foresee
the actual generalization capabilities of a deepfake
detector, and future manipulation techniques can
include the detector predictions to generate data
more robust to that specific model. Thus, we can-
not guarantee the applicability of our work to all
deepfake detection contexts in the future, which
can lead to false negative predictions and cause a
sense of false security among its users.

To address this issue, one strategy to follow is
to continually improve the training data with more
modern fake generation techniques and retrain the
network to keep it up-to-date.

Despite the potential risks, we believe that our
research can have a positive impact on society by
exposing manipulated media and preventing mali-
cious uses of deepfakes.
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