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ABSTRACT

Face alignment algorithms locate a set of landmark points in images of faces taken in unrestricted
situations. State-of-the-art approaches typically fail or lose accuracy in the presence of occlusions,
strong deformations, large pose variations and ambiguous configurations. In this paper we present
3DDE, a robust and efficient face alignment algorithm based on a coarse-to-fine cascade of ensembles
of regression trees. It is initialized by robustly fitting a 3D face model to the probability maps produced
by a convolutional neural network. With this initialization we address self-occlusions and large face
rotations. Further, the regressor implicitly imposes a prior face shape on the solution, addressing
occlusions and ambiguous face configurations. Its coarse-to-fine structure tackles the combinatorial
explosion of parts deformation. In the experiments performed, 3DDE improves the state-of-the-art in
300W, COFW, AFLW and WFLW data sets. Finally, we perform cross-dataset experiments that reveal
the existence of a significant data set bias in these benchmarks.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Face alignment algorithms precisely locate a set of points

of interest in the images of faces taken in unrestricted condi-

tions. It has received much attention from the research commu-

nity (Jin and Tan, 2017) since it is a preliminary step for esti-

mating 3D facial structure (Zhao et al., 2016) and many other

face image analysis problems such as verification and recog-

nition (Soltanpour et al., 2017), attributes estimation (Bekios-

Calfa et al., 2014) or facial expression recognition (Martinez

and Du, 2012), to name a few. Present approaches typically fail

or lose precision in the presence of occlusions, strong defor-

mations produced by facial expressions, large pose variations

and ambiguous configurations caused, for example, by strong
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make-up or the existence of other nearby faces.

Top performers in the most popular benchmarks are based

on Convolutional Neural Networks (CNNs) and Ensemble of

Regression Trees (ERT), see e.g., Tables 1, 2, 3, 4 and 5. The

large effective receptive field of deep models (Kowalski et al.,

2017; Lv et al., 2017; Xiao et al., 2016; Yang et al., 2017; Wu

et al., 2018) enable them to model context better and produce

robust landmark estimations. However, in these models it is not

easy to enforce facial shape consistency, something that lim-

its their accuracy in the presence of occlusions and ambigu-

ous facial configurations. ERT-based models (Burgos-Artizzu

et al., 2013; Cao et al., 2014; Kazemi and Sullivan, 2014; Lee

et al., 2015; Ren et al., 2016), on the other hand, are difficult

to initialize, but may implicitly impose face shape consistency

in their estimations (Cao et al., 2014). This increases their per-

formance in occluded and ambiguous situations. They are also
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much more efficient than deep models and, as we demonstrate

in our experiments, with a good initialization they are also very

accurate.

In this paper we present the 3DDE (3D Deeply-initialized

Ensemble) regressor, a robust and efficient face alignment algo-

rithm based on a coarse-to-fine cascade of ERTs. It is a hybrid

approach that inherits good properties of ERT, such as the abil-

ity to impose a face shape prior, and the robustness of deep

models. It is initialized by robustly fitting a 3D face model to

the probability maps produced by a CNN. With this initializa-

tion we tackle one of the main drawbacks of ERT, namely the

difficulty in initializing the regressor in the presence of occlu-

sions and large face rotations. On the other hand, the ERT im-

plicitly imposes a prior face shape on the solution, addressing

the shortcomings of deep models when occlusions and ambigu-

ous face configurations are present. Finally, its coarse-to-fine

structure tackles the combinatorial explosion of parts deforma-

tion, which is also a key limitation of approaches using shape

constraints (Cao et al., 2014).

A preliminary version of our work appeared in Valle et al.

(2018). Here we refine and extend it in several ways. First we

improve the initialization by using a RANSAC-like procedure

that increases its robustness in the presence of occlusions. We

have also introduced early stopping and better data augmenta-

tion techniques for increasing the regularization when training

both the ERT and the CNN. We also extend the evaluation in-

cluding the newly released WFLW data base and a detailed ab-

lation study. Finally, 3DDE may also be trained in presence of

missing and occluded landmarks in the training set. This has

enabled us to perform cross-dataset experiments that reveal the

existence of significant data set bias that may limit the general-

ization capabilities of regressors trained on present data bases.

To the best of our knowledge, this is the first time such a prob-

lem has been raised in the field.

2. Related Work

Face alignment has been a topic of intense research for more

than twenty years. Initial successful results were based on 2D

and 3D generative approaches such as the Active Appearance

Models (AAM) (Cootes et al., 1998) or the 3D Morphable Mod-

els (3DMM) (Blanz and Vetter, 2003). Recent approaches are

based on a cascaded combination of discriminative regressors.

In the earliest case these regressors are Random Ferns (Dol-

lar et al., 2010), Ensembles of Regression Trees (Cao et al.,

2012) or linear models (Xiong and la Torre, 2013, 2015). Key

ideas in this approach are indexing image description relative to

the current shape estimate (Dollar et al., 2010), and the use of a

regressor whose predictions lie on the subspace spanned by the

training face shapes (Cao et al., 2014), this is the so-called Cas-

cade Shape Regressor (CSR) framework. Kazemi and Sullivan

(2014) improved the original cascade framework by proposing

a real-time ensemble of regression trees. Ren et al. (2016) used

locally binary features to boost the performance up to 3000

FPS. Burgos-Artizzu et al. (2013) included occlusion estima-

tion and decreased the influence of occluded landmarks. Shen

et al. (2014) refine the initial location of face landmarks using

a random forest and SIFT features. Xiong and la Torre (2013,

2015) also use SIFT features and learn the linear regressor di-

viding the search space into individual regions with similar gra-

dient directions. Overall, this set of approaches are very sen-

sitive to the starting point of the regression process. For this

reason an important part of recent work revolves around how

to find good initializations (Zhu et al., 2015, 2016). However,

they are extremely efficient and may take advantage of implicit

shape constraints (Cao et al., 2012, 2014).

The recent development of deep learning techniques has also

impacted the face alignment field with the widespread use of

CNN-based regressors. Sun et al. (2013) were pioneers to apply

a three-level CNN for locating landmarks. Zhang et al. (2014)

proposed a multi-task solution to deal with face alignment and

attributes classification. Lv et al. (2017) use global and local

face parts regressors for fine-grained facial deformation estima-

tion. Yu et al. (2016) transform the landmarks rather than the

input image for the refinement cascade. Trigeorgis et al. (2016)

and Xiao et al. (2016) are the first approaches that fuse the fea-

ture extraction and regression steps of CSR into a recurrent neu-
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ral network trained end-to-end. Kowalski et al. (2017) and Yang

et al. (2017) use a global similarity transform to normalize land-

mark locations followed by a VGG-based and a Stacked Hour-

glass network respectively to regress the final shape. Wu et al.

(2018) derive face landmarks from boundary lines, which helps

to remove the ambiguities in the landmark definition. Deep

CNN models have large effective receptive fields that let them

model context better and convey these approaches with a high

degree of robustness to face rotation, scale, deformation and ini-

tialization. However, when used in a cascaded framework they

may notably increase the computational requirements. More-

over, it is not clear how to impose facial shape consistency on

the estimated set of landmarks. Hence, the regressor accuracy

may be harmed in the presence of occlusions or ambiguities.

There is also an increasing number of works based on 3D

face models. In the simplest case, they fit a mean model

to the estimated image landmarks positions (Kowalski and

Naruniec, 2016) or jointly regress the pose and shape of the

face (Jourabloo et al., 2017; Xiao et al., 2017). Zhu et al. (2017)

and Kumar and Chellappa (2018) fit a 3DMM in a cascaded

way. These approaches provide 3D pose information that may

be used to estimate landmark self-occlusions or to train simpler

regressors specialized in a given head orientation. However,

building and fitting a 3D face model is a difficult task and the

results of the full 3D approaches in current benchmarks are not

as good as those described above.

Our proposal tries to leverage on the good properties of the

three approaches described above. Using a CNN-based initial-

ization we inherit the robustness of deep learning models. Like

the simple 3D approaches we fit a rigid 3D face model to ini-

tialize the regressor and estimate the initial face orientation to

address self-occlusions and ambiguities. Finally, we use a cas-

caded ERT within a coarse-to-fine framework to achieve accu-

racy and efficiency while avoiding the combinatorial explosion

of independent parts deformations.

3. 3D deeply-initialized Ensemble

In this section we present 3DDE. It consists of two main

steps: CNN-based rigid face pose computation and ERT-based

non-rigid face deformation estimation, both shown in Fig. 1.

3.1. Rigid pose computation

ERT-based regressors require a good initialization to con-

verge. We propose the use of face landmarks location proba-

bility maps (Belhumeur et al., 2011; Dantone et al., 2012; Xiao

et al., 2016) to generate plausible shape initialization candi-

dates. We define a UNet-like architecture (Ronneberger et al.,

2015; Honari et al., 2016), with a loss function that handles

missing landmarks. We train this CNN to obtain a set of prob-

ability maps, P(I), that model the position of each landmark in

the input image (see Fig. 1). The maximum of each smoothed

probability map determines our initial landmark positions. Note

in Fig. 1 that these predictions are sensitive to occlusions, ambi-

guities and may not be a valid face shape. Compared to typical

CNN-based approaches, e.g., Yang et al. (2017), our CNN is

much simpler, since we only require a rough estimation of land-

mark locations.

To start the ERT with a plausible face, we compute the ini-

tial shape by fitting a rigid 3D head model to the estimated 2D

landmarks locations. To this end we use the softPOSIT algo-

rithm proposed by David et al. (2004) within a robust scheme.

Unlike Valle et al. (2018), here we use a set of the distinct land-

marks to establish the correspondences between the CNN pre-

dictions and the 3D face model. This avoids problems related

to ambiguous landmarks around the jaw that do not correspond

always to the same 3D points and produce wrong initializations,

mainly in profile faces. Moreover, we have also implemented

a RANSAC-like procedure, that runs softPOSIT several times

with subsets of correspondences, to obtain a robust estimation

(see Algorithm 1).

Let X ∈ RL×3 be the 3D coordinates of the L landmarks on

the 3D face model, x ∈ RL×2 their 2D projections onto the im-

age plane and v ∈ {0, 1}L their visibilities. We produce subsets

of correspondences (xs,Xs) from the distinct landmarks shown
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Fig. 1. 3DDE framework diagram. GS, Max and RANSAC+POSIT represent the Gaussian smoothing filter, the maximum of each probability map and

the robust 3D pose estimation respectively.

Algorithm 1 Initialization algorithm (g0)
Input: P(I), X

// Select coordinates of maximum probability

{x(l) = arg max(Pl(I))}Ll=1

p∗ = 0

for z=1 to Z do

// Select subset from distinct landmarks

xs,Xs = chooseLandmarksSubset(x, X)

// Compute projection matrix between xs,Xs

R, t = softPOSIT(xs, Xs)

// Project 3D face model using previous matrix

xz, vz = projectPoints(X, R, t)

// Evaluate the goodness of the initialization

p(xz) =
∑L

l=1 P
l(I)[xz(l)]

if p(xz) > p∗ then

p∗ = p(xz), R∗ = R, t∗ = t

end if

end for

x0, v0 = projectPoints(X, R∗, t∗)

Output: x0, v0

in Fig. 8a, estimate the 3D face model pose (R, t) with soft-

POSIT and evaluate the goodness of each estimation as the sum

of landmarks probabilities,

p(xz) =

L∑
l=1

Pl(I)[xz(l)],

where xz(l) are the 2D coordinates of the l-th landmark and

Pl(I) is the probability map for landmark l. Finally, we select

the rigid transformation (R, t) with highest p(xz). As a result,

we project the 3D model onto the image using the most likely

estimated rigid transformation. This provides the ERT with a

rough estimation of the scale, translation and 3D pose of the

target face (see Fig. 1), and the visibility estimation of the self-

occluded parts of the face.

Let x0 = g0(P(I), X) be the initial shape, the output of the

initialization function g0 after processing the input image I.

With our initialization we enforce two key requirements for the

convergence of the ERT. First, that x0 lies on the face with an

approximately correct 3D face pose. Second, that x0 is a valid

face shape. The latter guarantees that the predictions in the next

step of the algorithm will also be valid face shapes (Cao et al.,

2014).
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3.2. ERT-based non-rigid shape estimation

Let S = {si}
N
i=1 be the set of training face shapes, where

si = (Ii, xg
i , v

g
i ,w

g
i , x

0
i , v

0
i ). Each shape si has its own training

image, Ii, ground truth shape, xg
i , ground truth visibility label,

vg
i , annotated landmark label, wg

i ∈ {0, 1}
L, initial shape, x0

i ,

and visibilities, v0
i , for training the ERT regressor. In our im-

plementation we use shape-indexed features (Lee et al., 2015),

φ(P(Ii), xt
i,w

g
i ), that depend on the current shape xt

i of the land-

marks in image Ii and whether they are annotated or not, wg
i .

We divide the regression process into a maximum of T

stages. We learn an ensemble of K regression trees for the t-th

stage, Ct( fi) = xt−1
i +

∑K
k=1 gk( fi), where fi = φ(P(Ii), xt−1

i ,wg
i )

and x j are the coordinates of the landmarks estimated in j-th

stage. To train the ERT we use the N training shapes in S

to generate an augmented training set of samples, SA, and a

validation set, SV , with cardinality NA = |SA| and NV = |SV |

respectively. The total number of samples is NT = NA + NV . In-

stead of using a fixed number of stages, like Valle et al. (2018),

we stop training when the validation error stops improving. In

this way the regressor has a variable number of stages. We com-

pute the initialization for each sample using the 3D projections

produced by g0 (see generated initializations in Fig. 2). We also

improve the data augmentation used in Valle et al. (2018). To

this end we add random noise to the yaw, pitch and roll angles,

of the rotation matrix R∗ estimated with g0, to generate new

training initializations for each sample in SA.

Following et al. Burgos-Artizzu et al. (2013) and Kazemi

and Sullivan (2014), we attach to each landmark in S the bi-

nary labels {v,w} ∈ {0, 1} that model respectively whether it

is visible and annotated. We learn these labels in the ERT to-

gether with the landmark location. Each initial shape is progres-

sively refined by estimating a shape and visibility increments

Cv
t (φ(P(Ii), xt−1

i ,wg
i )) where xt−1

i represents the current shape

of the i-th sample (see Algorithm 2). Cv
t is trained to mini-

mize only the landmark position errors but on each tree leaf,

in addition to the mean shape, we also output the mean of all

training shapes visibilities, vg
i , that belong to that node. We de-

fine At−1 = {(xt−1
i , vt−1

i )}NA
i=1 and Vt−1 = {(xt−1

i , vt−1
i )}NV

i=1 as the

set of all current shapes and corresponding visibility vectors for

all training and validation data, respectively.

Algorithm 2 Training an Ensemble of Regression Trees
Input: S, T

// Generate an augmented training set of samples

SA,SV = dataAugmentation(S)

repeat

// Extract training (FA) and validation (FV ) features

FA ∪ FV = { fi}
NT
i=1 = {φ(P(Ii), xt−1

i ,wg
i )}NT

i=1

// Apply Algorithm 3 using training samples

Cv
t = learnCoarseToFineRegressor(SA, FA,At−1, K, P)

// Update validation samples

Vt = Vt−1 + {Cv
t ( fi)}

NV
i=1

// Increase P when NME({xt
i, x

g
i }

NA
i=1) < NME({xt

i, x
g
i }

NV
i=1)

// Compute validation error improvement

∆ε = NME({xt−1
i , xg

i }
NV
i=1) − NME({xt

i, x
g
i }

NV
i=1)

until t > T or ∆ε < 1%

Output: {Cv
t }

T ∗
t=1 // T ∗ is the last trained stage

Compared with conventional ERT approaches, our ensemble

is simpler. It will require fewer trees because we only have

to estimate the non-rigid face deformation, since the 3D rigid

component has already been estimated in the previous step. In

the following we describe the details.

3.2.1. Initial shapes for regression

The selection of the starting point in the ERT is fundamental

to reach a good solution. The simplest choice is the mean of

the ground truth training shapes, x̄0 =
∑N

i=1 xg
i /N. However,

such a poor initialization leads to wrong alignment results in

test images with large pose variations. Alternative strategies

run the ERT several times with different initializations (Burgos-

Artizzu et al., 2013), initialize with other ground truth shapes

x0
i ← xg

j where i , j (Kazemi and Sullivan, 2014), or randomly

deform the initial shape (Kowalski et al., 2017).

In our approach we initialize the ERT using the algorithm

described in section 3.1, that provides a robust pose and a valid
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Fig. 2. The 8 worst initial shapes for the 300W private test set produced by

g0 (CNN+3D).

shape for initialization (see Fig. 2). Hence, the ERT only needs

to estimate the non-rigid deformation component of the face.

3.2.2. Feature Extraction

ERT efficiency depends on the feature extraction step. In

general, descriptor features such as SIFT used by Xiong and

la Torre (2013) and Zhu et al. (2015) improve face alignment

results, but have higher computational cost compared to simpler

features such as plain pixel value differences (Cao et al., 2014;

Burgos-Artizzu et al., 2013; Kazemi and Sullivan, 2014; Ren

et al., 2016). In our case, a simple feature suffices, since shape

landmarks are close to their ground truth location.

We use the probability maps P(I) to extract features for the

cascade. To this end, we select a landmark l and its associated

probability map Pl(I). The feature is computed as the differ-

ence between two pixels values in Pl(I) from a FREAK de-

scriptor pattern (Alahi et al., 2012) around l, similar to those in

Lee et al. (2015). However, ours are defined on the probability

maps, P(I), instead of the image, I. We let the training algo-

rithm select the most informative landmark and pair of pixels in

each iteration.

3.2.3. Learn a coarse-to-fine regressor

To train the t-th stage regressor, Cv
t , we fit an ERT. Thus, the

goal is to sequentially learn a series of weak learners to greedily

minimize the regression loss function:

Lt(SA,FA,At−1) =

NA∑
i=1

||wg
i � (xg

i − xt−1
i −

K∑
k=1

gk( fi))||2 (1)

where � is the Hadamard product. There are different ways of

minimizing Equation 1. Kazemi and Sullivan (2014) present a

Fig. 3. The P = 10 face parts of 300W, COFW, AFLW and WFLW data

bases in the fine stage of our coarse-to-fine ERT.

general framework based on Gradient Boosting for learning an

ensemble of regression trees. Lee et al. (2015) establish an op-

timization method based on Gaussian Processes also learning

an ensemble of regression trees but outperforming previous lit-

erature by reducing the overfitting. In our approach we adopt a

Gradient Boosting scheme (see Algorithm 3).

A crucial problem when training a global face landmark re-

gressor is the lack of examples showing all possible combi-

nations of face parts deformations. Hence, these regressors

quickly overfit and generalize poorly to combinations of part

deformations not present in the training set. To address this

problem we introduce the coarse-to-fine ERT architecture.

The goal is to be able to cope with combinations of face part

deformations not seen during training. A single monolithic re-

gressor is not able to estimate these local deformations (see the

difference between monolithic and coarse-to-fine NME curves

in Fig. 6a). Our algorithm is agnostic in the number of parts

and stages of the coarse-to-fine estimation. Algorithm 3 details

the training of P face parts regressors (each one with a subset

of the landmarks) to build a coarse-to-fine regressor. Note that

Ak−1 in this context is the shape and visibility vectors from the

last regressor output (e.g., the previous part regressor or a pre-

vious full stage regressor). In our implementation the coarse-

to-fine scheme has two stages. The coarse stage has one part,

P = 1, that involves all landmarks and K1 trees. The fine stage

has ten parts, P = 10, left/right eyebrow, left/right eye, nose,

top/bottom mouth, left/right ear and chin (see Fig. 3), with K2

trees.

3.2.4. Fit a regression tree

The training objective for the k-th regression tree is to mini-

mize the sum of squared residuals, taking into account the an-
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Algorithm 3 Training P parts regressors
Input: SA, FA,At−1, ν,K, P

for k=1 to K do

for p=1 to P do

// Compute residuals:

// � is the Hadamard product

// (p) selects elements of vectors in that part

{rk
i (p) = wg

i (p) � (xg
i (p) − xk−1

i (p))}NA
i=1

gp
k = fitRegressionTree({rk

i (p)}NA
i=1,FA(p))

// Update samples with the regression tree estimation,

// ν, shrinkage factor to scale each tree contribution

Ak(p) = Ak−1(p) + ν · {gp
k ( fi(p))}NA

i=1

end for

end for

Output: {Cp}Pp=1, being Cp = {gp
k }

K
k=1

notated landmark labels:

Ek =

NA∑
i=1

||rk
i ||

2 =

NA∑
i=1

||wg
i � (xg

i − xk−1
i )||2 (2)

We learn each regression binary tree by recursively splitting the

training set into the left (l) and right (r) child nodes. The tree

node split function is designed to minimize Ek from Equation 2

in the selected landmark. To train a regression tree node we ran-

domly generate a set of candidate split functions, each of them

involving four parameters θ = (τ,p1,p2, l), where p1 and p2 are

pixels coordinates on a fixed FREAK structure around the l-th

landmark coordinates in xk−1
i . The feature value corresponding

to θ for the i-th training sample is fi(θ) = Pl(Ii)[p1]−Pl(Ii)[p2],

the difference of probability values in the maps for the given

landmark. Finally, we compute the split function thresholding

the feature value, fi(θ) > τ.

Given N ⊂ SA the set of training samples at a node, fitting

a tree node for the k-th tree, consists of finding the parameter θ

that minimizes Ek(N , θ)

arg min
θ

Ek(N , θ) = arg min
θ

∑
b∈{l,r}

∑
s∈Nθ,b

||rk
s − µθ,b||

2 (3)

where Nθ,l and Nθ,r are, respectively, the samples sent to the

left and right child nodes due to the decision induced by θ. The

mean residual µθ,b for a candidate split function and a subset of

training data is given by

µθ,b =
1
|Nθ,b|

∑
s∈Nθ,b

rk
s (4)

Once we know the optimal split each leaf node stores the

mean residual, µθ,b, as the output of the regression for any ex-

ample reaching that leaf. We also output the mean visibility of

the samples reaching the tree leaf.

4. Experiments

To train and evaluate our proposal, we perform experiments

with 300W, COFW, AFLW and WFLW that are considered the

most challenging public data sets:

• 300W. It provides 68 manually annotated landmarks, Sag-

onas et al. (2016). We follow the most established ap-

proach and divide the 300W annotations into 3148 training

and 689 testing images (public competition). Evaluation is

also performed on the 300W private competition using the

previous 3837 images as training and 600 newly updated

images as testing set.

• COFW. This benchmark, presented in Burgos-Artizzu

et al. (2013) focuses on occlusion. Commonly, there are

1345 training faces in total. The testing set is made of 507

images. The annotations include the landmark positions

and the binary occlusion labels for 29 points.

• AFLW. It provides a collection of 25993 in-the-wild faces,

with 21 facial landmarks annotated depending on their vis-

ibility, Koestinger et al. (2011). We have found several

annotations errors and, consequently, removed these faces

from our experiments. From the remaining faces we ran-

domly choose 19312 images for training/validation and

4828 instances for testing.

• WFLW. It consists of 7500 extremely challenging train-

ing and 2500 testing faces divided into six subgroups,

pose, expression, illumination, make-up, occlusion and

blur, with 98 fully manual annotated landmarks, Wu et al.

(2018).
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4.1. Evaluation

We use the Normalized Mean Error (NME) as a metric to

measure the shape estimation error

NME =
100
N

N∑
i=1

 1
||wg

i ||1

L∑
l=1

wg
i (l) ·

∥∥∥xi(l) − xg
i (l)

∥∥∥
di

 (5)

It computes the mean euclidean distance between the ground-

truth and estimated landmark positions normalized by di. We

report our results using different values of di: the ground truth

distance between the eye centers (pupils), the ground truth dis-

tance between the outer eye corners (corners) and the ground

truth bounding box size (height).

In addition, we also compare our results using Cumulative

Error Distribution (CED) curves. We calculate AUCε as the

area under the CED curve for images with an NME smaller

than ε and FRε as the failure rate representing the percentage of

testing faces with NME greater than ε. We use precision/recall

percentages to compare occlusion prediction.

To train our algorithm we shuffle the training set of each data

base and split it into 90% train-set and 10% validation-set.

4.2. Implementation

All experiments have been carried out with the settings de-

scribed in this section. For each data set, we train from scratch

the CNN selecting the model parameters with lowest validation

error. We crop faces using the ground truth bounding boxes

annotations enlarged by 30%. We generate different training

samples in each epoch by applying random in plane rotations

between ±45◦, scale changes by ±15% and translations by ±5%

of bounding box size, randomly mirroring images horizontally

and generating random rectangular occlusions. We use Adam

stochastic optimization with β1 = 0.9, β2 = 0.999 and ε = 1e−8

parameters. We train until convergence with an initial learning

rate α = 0.001. When validation error levels out for 10 epochs,

we multiply the learning rate by decay = 0.05. In the CNN

the cropped input face is reduced from 160×160 to 1×1 pixels

gradually dividing by half their size across B = 8 branches ap-

plying a stride 2 convolution with kernel size 2×21. We apply

15×5 images are reduced to 2×2 pixels applying a kernel size of 3×3

batch normalization after each convolution. All layers contain

68 filters to describe the required landmark features. We apply

a Gaussian filter with σ = 33 to the output probability maps to

stabilize the initialization, g0.

We train the coarse-to-fine ERT with the Gradient Boost-

ing algorithm (Hastie et al., 2009). It requires a maximum of

T = 20 stages of K = 50 regression trees per stage. The depth

of trees is set to 4. The number of tests to choose the best split

parameters, θ, is set to 200. We resize each image to set the face

size to 160×160 pixels. For feature extraction, the FREAK pat-

tern diameter is reduced gradually in each stage (i.e., in the last

stages the pixel pairs for each feature are closer). We generate

Z = 25 initializations in the robust softPOSIT scheme of g0.

We augment the shapes of each face training image to create a

set, SA, of at least NA = 60000 samples to train the cascade.

To avoid overfitting we use a shrinkage factor ν = 0.1 and sub-

sampling factor η = 0.5 in the ERT. Our regressor triggers the

coarse-to-fine strategy once the training error is below the vali-

dation error, e.g., t = 5 in Fig. 6a.

Training the CNN and the coarse-to-fine ensemble of trees

takes 48 hours using a NVidia GeForce GTX 1080Ti (11GB)

GPU and an dual Intel Xeon Silver 4114 CPU at 2.20GHz

(2×10 cores/20 threads, 128 GB of RAM) with a batch size of

32 images. At runtime our method process test images on aver-

age at a rate of 12.5 FPS, where the CNN takes 75 ms and the

ERT 5 ms per face image using C++, Tensorflow and OpenCV

libraries.

4.3. Experiments using public code

Published results in the literature are sometimes not fully

comparable. In this section we use publicly available code

to ensure a fair comparison between 3DDE and DCFE (Valle

et al., 2018), LAB (Wu et al., 2018), DAN (Kowalski et al.,

2017), RCN (Honari et al., 2016), cGPRT (Lee et al., 2015),

RCPR (Burgos-Artizzu et al., 2013) and ERT (Kazemi and

Sullivan, 2014) with the same settings (including same train-

ing, validation and bounding boxes), in different benchmarks:

300W public, 300W private, COFW and WFLW. Note that

LAB (Wu et al., 2018) only provides a trained model for the
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Fig. 4. Cumulative error distribution curves sorted by AUC.

WFLW data set. In addition, DAN (Kowalski et al., 2017) pro-

vides code using 68 landmarks, for this reason we only report

results in 300W. In Fig. 4 we plot the CED curves for all data

bases. In the legend we provide the AUC and FR values for

each algorithm.

The selected algorithms are representative of the three main

families of solutions: a) ensembles of regression trees (cGPRT,

RCPR, ERT), b) CNN-based approaches (LAB, DAN, RCN)

and c) mixed approaches with deep nets and ensembles of re-

gression trees (3DDE, DCFE). Overall, 3DDE is better than

any other providing a public implementation in the literature.

We improve over our preliminary algorithm, DCFE Valle et al.

(2018), because of the better 3D initialization and regulariza-

tion (see a complete analysis in section 4.5). In general we are

able to improve by a large margin other ERT methods as RCPR,

ERT or cGPRT because of the better initialization and the ro-

bust features provided by the CNN. We also outperform RCN

(without any denoising model), a CNN architecture like the one

used in 3DDE. Even DAN and LAB, that implement a cascade

of CNN regressors, can not compete with the regularization ob-

tained by using the cascade of ERT in 3DDE (see Fig. 4). The

fact that the largest margin is in COFW reflects the importance

of the implicit shape model in our cascade to address occlu-

sions.

4.4. Experiments using published results

In this section we compare 3DDE with other methods in the

literature by using their published results. Since our method is

Method

Common Challenging Full

pupils corners pupils corners pupils corners

NME NME NME NME NME NME AUC8 FR8

RCPR (Burgos-Artizzu et al., 2013) 6.18 - 17.26 - 8.35 - - -

ESR (Cao et al., 2012) 5.28 - 17.00 - 7.58 - 43.12 10.45

SDM (Xiong and la Torre, 2013) 5.60 - 15.40 - 7.52 - 42.94 10.89

ECSAN (Zhang and Hu, 2018) 5.42 - 11.80 - 6.67 - - -

ERT (Kazemi and Sullivan, 2014) - - - - 6.40 - - -

LBF (Ren et al., 2016) 4.95 - 11.98 - 6.32 - - -

cGPRT (Lee et al., 2015) - - - - 5.71 - - -

CFSS (Zhu et al., 2015) 4.73 - 9.98 - 5.76 - 49.87 5.08

DDN (Yu et al., 2016) - - - - 5.65 - - -

TCDCN (Zhang et al., 2014) 4.80 - 8.60 - 5.54 - - -

MDM (Trigeorgis et al., 2016) - - - - - - 52.12 4.21

3DDFA (Zhu et al., 2017) 5.09 - 8.07 - 5.63 - - -

RCN (Honari et al., 2016) 4.67 - 8.44 - 5.41 - - -

DAN (Kowalski et al., 2017) 4.42 3.19 7.57 5.24 5.03 3.59 55.33 1.16

TSR (Lv et al., 2017) 4.36 - 7.56 - 4.99 - - -

RAR (Xiao et al., 2016) 4.12 - 8.35 - 4.94 - - -

SHN (Yang et al., 2017) 4.12 - 7.00 4.90 4.68 - - -

DCFE (Valle et al., 2018) 3.83 2.76 7.54 5.22 4.55 3.24 60.13 1.59

PCD-CNN (Kumar and Chellappa, 2018) 3.67 - 7.62 - 4.44 - - -

3DDE 3.73 2.69 7.10 4.92 4.39 3.13 61.24 1.30

Table 1. Error of face alignment methods on the 300W public test set.

able to train with unannotated landmarks and visibilities, we are

able to train and evaluate all data sets in the literature.

First we test our method against the 300W benchmark. Our

approach obtains the best overall performance in the indoor and

outdoor subsets of the private competition (see Table 2) and in

the full subset of the 300W public test set (see Table 1). This

is due to the excellent accuracy achieved by the coarse-to-fine

ERT scheme enforcing valid face shapes and the deep robust

features extracted from the CNN. In the challenging subset of

the 300W public competition, SHN (Yang et al., 2017) gets bet-

ter results than 3DDE. This is due to 3DDE failing to estimate

good landmark probability maps for images with large scale

variations. Our method exhibits superior capability in handling

typical cases in the data base, since we achieve the best NME

full set results in 300W public, 4.39, and in 300W private, 3.73.

We may assess the improvement achieved by the 3D initial-

ization and the coarse-to-fine ERT by comparing the results of

3DDE in the full subset of 300W, 4.39, with Honari’s RCN us-

ing the denoising model (Honari et al., 2016), 5.41. It roughly

represents a 19% improvement in the inter-pupils NME.
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Method

Indoor Outdoor Full

corners corners corners

NME AUC8 FR8 NME AUC8 FR8 NME AUC8 FR8

ESR (Cao et al., 2012) - - - - - - - 32.35 17.00

cGPRT (Lee et al., 2015) - - - - - - - 41.32 12.83

CFSS (Zhu et al., 2015) - - - - - - - 39.81 12.30

MDM (Trigeorgis et al., 2016) - - - - - - 5.05 45.32 6.80

DAN (Kowalski et al., 2017) - - - - - - 4.30 47.00 2.67

SHN (Yang et al., 2017) 4.10 - - 4.00 - - 4.05 - -

DCFE (Valle et al., 2018) 3.96 52.28 2.33 3.81 52.56 1.33 3.88 52.42 1.83

3DDE 3.74 53.93 2.00 3.71 53.95 2.66 3.73 53.94 2.33

Table 2. Error of face alignment methods on the 300W private test set.

Table 3 compares the performance of our model using the

COFW data set. This is the standard to evaluate occlusions.

3DDE obtains the best results, NME 5.11, establishing a new

state-of-the-art. This shows the importance of the face shape

model implicit in the cascade of ERT to cope with severe occlu-

sions. In terms of landmark visibility estimation, we have ob-

tained better precision with an overall better recall than the best

previous approach, DCFE. Again, the regularization together

with the new initialization contributes to improve DCFE.

In Table 4 we show the results of our evaluation with AFLW.

This is a challenging data set not only because of its size and

the large variability of face poses, but also because of the large

number of samples with occluded landmarks, that are unanno-

tated. Although the results in Table 4 are not strictly compara-

ble, because each paper uses its own train and test subsets, we

get an NME of 2.06 with the full 21 landmarks set. Again, it

is a new state-of-the-art, since most competing approaches do

not use the two most difficult landmarks, each located in one

earlobe (see 19 landmarks results in Table 4). We have also

evaluated 3DDE without the two earlobe landmarks. In this

case we get an NME of 2.01, the best reported result.

Finally, we have also evaluated 3DDE with the newly re-

leased WFLW data set (Wu et al., 2018). In enables us to eval-

uate different sources of variability (i.e., expressions, illumina-

tion, make-up, occlusions and blur). In Table 5 we provide the

results of various competing methods (Wu et al., 2018), nor-

malized by the eye corners distance. 3DDE outperforms its

Method
pupils occlusion

NME AUC8 FR8 precision/recall

RCPR (Burgos-Artizzu et al., 2013) 8.50 - - 80/40

TCDCN (Zhang et al., 2014) 8.05 - - -

RAR (Xiao et al., 2016) 6.03 - - -

DAC-CSR (Feng et al., 2017) 6.03 - - -

Wu et al. (Wu and Ji, 2015) 5.93 - - 80/49.11

SHN (Yang et al., 2017) 5.6 - - -

PCD-CNN (Kumar and Chellappa, 2018) 5.77 - - -

DCFE (Valle et al., 2018) 5.27 35.86 7.29 81.59/49.57

3DDE 5.11 38.18 6.50 85.92/51.04

Table 3. Error of face alignment methods on COFW.

Method

19 landmarks 21 landmarks

height height

NME NME

PIFAS (Jourabloo et al., 2017) - 4.45

CFSS (Zhu et al., 2015) 3.92 -

CCL (Zhu et al., 2016) 2.72 -

DAC-CSR (Feng et al., 2017) 2.27 -

Binary-CNN (Bulat and Tzimiropoulos, 2017) - 2.85

PCD-CNN (Kumar and Chellappa, 2018) - 2.40

TSR (Lv et al., 2017) 2.17 -

DCFE (Valle et al., 2018) 2.12 2.17

3DDE 2.01 2.06

Table 4. Error of face alignment methods on AFLW.

competitors in all the WFLW subsets by a large margin. We

hypothesize that the reason for this is that the hybrid approach

in 3DDE can be trained with less samples that some of its most

prominent competitors and at the same time provide a very ac-

curate face shape (see Fig. 5). Moreover, we achieve the best

AUC in all subsets, which determines that 3DDE is the best

approach under all capture conditions (easy/frontal and diffi-

cult/profile) including all subsets that contain several types of

difficulties.

4.5. Ablation study

3DDE is based on three key ideas: 3D initialization, a cas-

caded ERT regressor operating on probabilistic CNN features

and a coarse-to-fine scheme. In this section we analyze the

contribution of each one to the overall performance of our al-

gorithm.
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Method

Full Pose Expression Illumination Make-up Occlusion Blur

corners corners corners corners corners corners corners

NME AUC10 FR10 NME AUC10 FR10 NME AUC10 FR10 NME AUC10 FR10 NME AUC10 FR10 NME AUC10 FR10 NME AUC10 FR10

ESR (Cao et al., 2012) 11.13 27.74 35.24 25.88 1.77 90.18 11.47 19.81 42.04 10.49 29.53 30.80 11.05 24.85 38.84 13.75 19.46 47.28 12.20 22.04 41.40

SDM (Xiong and la Torre, 2013) 10.29 30.02 29.40 24.10 2.26 84.36 11.45 22.93 33.44 9.32 32.37 26.22 9.38 31.25 27.67 13.03 20.60 41.85 11.28 23.98 35.32

CFSS (Zhu et al., 2015) 9.07 36.59 20.56 21.36 6.32 66.26 10.09 31.57 23.25 8.30 38.54 17.34 8.74 36.91 21.84 11.76 26.88 32.88 9.96 30.37 23.67

LAB (Wu et al., 2018) 5.27 53.23 7.56 10.24 23.45 28.83 5.51 49.51 6.37 5.23 54.33 6.73 5.15 53.94 7.77 6.79 44.90 13.72 6.32 46.30 10.74

3DDE 4.68 55.44 5.04 8.62 26.40 22.39 5.21 51.75 5.41 4.65 56.02 3.86 4.60 55.36 6.79 5.77 46.92 9.37 5.41 49.57 6.72

Table 5. Error of face alignment methods on WFLW.

6.407 20.798 24.565 16.859

3.829 13.105 6.719 8.168

Fig. 5. First row shows LAB (Wu et al., 2018) results, second row 3DDE

results. We report the corresponding NME normalized by the eye corners

distance. Blue and green colours represent ground truth and predictions

respectively.

In Table 6 we show the results obtained by different config-

urations of our framework when evaluated on WFLW. We have

chosen WFLW in our study because it allows the analysis of

results stratified by different types of difficulties (i.e., facial ex-

pressions, large poses, illumination changes, etc.). In this case,

since there are many profile faces, we use the height as normal-

ization for the NME. So, the numerical values are not directly

comparable to those in Table 5. MS stands for “mean shape ini-

tialization” of the ERT. 3D means to initialize the ERT with the

procedure in section 3.1. SE denotes using plain gray level fea-

tures for the ERT whereas DE denotes using probability maps

produced by the CNN to train the ERT. Finally CF stands for

using the coarse-to-fine scheme.

When combined with the cascaded ERT, the 3D initializa-

tion is key to achieve top overall performance, see CNN+MS+DE

vs CNN+3D+DE in the full subset. The reason for this is that, in

the 3D case, the initialization takes care of the rigid component

of face pose so that the ERT cascade only models non-rigid de-

formations. Moreover, the projection of the 3D face model is

a correct 2D shape, a requirement for the ERT to converge to a

valid face shape (Cao et al., 2014). Of course, the 3D initializa-

tion is fundamental to achieve good performance in presence of

large face rotations. So, it provides the largest improvement in

the pose subset.

The use of CNN probability maps improves the NME in the

full data set in about 20% (see CNN+3D+SE vs CNN+3D+DE). The

large receptive fields of CNNs are specially helpful in challeng-

ing situations, specifically those in the pose and occlusion sub-

sets.

The coarse-to-fine strategy in our cascaded ERT provides

significative local improvements in difficult cases, with rare fa-

cial part combinations (see Fig. 6a). For this reason, the largest

gain of CNN+3D+DE+CF vs CNN+3D+DE occurs in the expres-

sions subset. Although this strategy provides improvements

in all the data base subsets, the actual NME differences are

washed out when averaged over the number of landmarks in the

face and the number of images in the subset. They may be ap-

preciated by looking into specific data subsets or samples (see

Fig. 6a), such as the left eyebrow/eye location improvement in

Fig. 6b and 6c (best viewed after zoom-in).

Finally, we analyze the NME distribution produced by the

rigid initialization and the final 3DDE model (see Fig. 7). Us-

ing the model trained for the WFLW experiment, we align the

2500 test samples of WFLW and plot the distribution of NMEs,

produced both with the CNN+3D regressor (softPOSIT result)

and the full CNN+3D+DE+CF regressor (3DDE result). The val-
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Method

Full Pose Expression Illumination Make-up Occlusion Blur

height height height height height height height

NME AUC4 FR4 NME AUC4 FR4 NME AUC4 FR4 NME AUC4 FR4 NME AUC4 FR4 NME AUC4 FR4 NME AUC4 FR4

CNN+3D+SE 2.52 41.10 11.56 3.53 24.08 28.83 2.90 33.22 15.92 2.53 41.85 10.45 2.59 39.08 15.53 3.06 31.10 22.14 2.91 33.98 15.78

CNN+MS+DE 2.23 49.77 7.04 3.33 35.13 17.79 2.56 45.15 8.91 2.17 49.29 5.87 2.33 46.85 9.70 2.69 40.33 12.90 2.53 42.71 9.57

CNN+3D+DE 2.03 51.14 5.47 2.68 39.55 11.96 2.21 46.66 7.96 2.11 50.09 5.01 2.13 48.57 7.28 2.56 40.83 12.36 2.40 43.84 8.27

CNN+3D+DE+CF 2.01 51.67 5.20 2.63 39.90 10.73 2.15 48.19 5.73 2.06 50.79 4.87 2.12 49.05 7.28 2.54 40.94 12.22 2.39 43.93 8.02

Table 6. Ablation study. MS and 3D represent the 2D mean shape and 2D projections of the 3D mean face respectively. SE and DE represent the type of

features used in the cascade being simple grayscale features and deep probability maps features respectively. The CNN+3D+DE+CF row represents the

full 3DDE approach results.
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(a) Evolution of the NME through the different stages in the cascade

(b) Monolithic (c) Coarse-to-fine

Fig. 6. Example of a monolithic ERT regressor vs. our coarse-to-fine ap-

proach. (a) NME evolution through the stages in the cascade (left plot, 8

mouth landmarks for all test images in the expression subset; right plot,

all 98 landmarks in one image). (b) predicted shape and zoom-in with a

monolithic regressor. (c) predicted shape and zoom-in with our coarse-to-

fine approach.

ues of percentiles 10 and 90 of the NME distribution are 3.71

and 6.87 for the CNN+3D regressor and 1.03 and 3.32 for the

CNN+3D+DE+CF one. So, on average, the full regressor reduces

in about 60% the NME achieved by the rigid initialization.

4.6. Cross-dataset evaluation

In this section we perform cross-dataset experiments to eval-

uate the quality of present benchmarks and the generalization

of the regressors trained on them. Here we benefit from the fact

that 3DDE may be trained in a semi-supervised way, i.e., us-

ing data sets with missing or unlabeled landmarks. To this end

we select 24 distinct facial landmarks (see Fig. 8a). We con-

sider them distinct because they may be accurately located by
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Fig. 7. Sample distribution of NMEs produced by the CNN+3D and 3DDE

regressors. We use the height as normalization for the NME.

a human annotator. We train and evaluate 3DDE respectively

with the training and test sets of each data base. We have also

performed one more experiment training 3DDE with the train-

ing sets of all data bases and evaluating it successively with the

tests sets of each of them, we denote this experiment with label

All.

In Table 7 we show the results of our evaluation. The small-

est data base, COFW, has the worst cross-dataset results. On the

other hand, the data set with greatest diversity, WFLW, has the

best results. Moreover, the model All, trained with the training

sets of all data bases, is able to improve, in all cross-dataset ex-

periments, the models trained in a single data set. However, the

most prominent outcome of this experiment is that we always

achieve the best result when training with the train subset of the

same data base. This holds even when compared against the

model trained with all data sets, confirming the existence of the

so-called “data set bias” in current benchmarks (Torralba and

Efros, 2011).



13

Train

Test
300W COFW AFLW WFLW All

300W 2.00 3.11 4.90 3.44 4.15

COFW 3.68 2.09 4.56 4.03 4.19

AFLW 4.19 2.51 2.15 3.29 2.65

WFLW 2.57 2.53 3.28 1.70 2.71

All 2.34 2.23 2.41 1.96 2.26

Table 7. Cross-dataset experiment using only distinct landmarks to com-

pute NME normalized by height.

(a) Distinct landmarks
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(b) NME per landmark

Fig. 8. Location of distinct face landmarks and the NME related to each

landmark.

In a final experiment we use model All to evaluate the NME

of each landmark using the test sets of all data sets (see Fig. 8b).

The landmarks with highest NME are those related to the ears,

the bottom of the mouth and the chin.

5. Conclusions

We have introduced 3DDE, a robust face alignment method

that leverages on good properties of CNNs, cascade of ERT

and 3D face models. The CNN provides robust landmark es-

timations with weak face shape enforcement. The ERT is able

to enforce the face shape and achieve better accuracy in land-

mark detection, but it only converges with a good initialization.

Finally, 3D models exploit face orientation information to im-

prove self-occlusion estimation.

3DDE is initialized by robustly fitting a 3D face model to the

probability maps produced by the CNN. The 3D model enables

3DDE to handle self-occlusions and successfully deal with both

frontal and profile faces. Once initialized, the cascade of ERT

only models the non-rigid component of face motion. It pro-

vides various benefits, namely, it enforces shape consistency,

may be trained with unlabeled landmarks, estimate landmark

visibility and efficiently parallelize the execution of the regres-

sion trees within each stage. We have additionally introduced

a coarse-to-fine scheme within the cascade of ERT that is able

to deal with the combinatorial explosion of local parts defor-

mation. In this case, the usual monolithic ERT will perform

poorly when fitting faces with combinations of facial part de-

formations not present in the training set. This is a fundamental

limitation of implicit shape models addressed by 3DDE.

In the experiments we have shown that 3DDE improves,

as far as we know, the state-of-the-art performance in 300W,

COFW, AFLW and WFLW data sets. In our ablation analysis

we have shown that all the components of the system critically

contribute to the final result.

The availability of large annotated data sets has encouraged

research in this area with important performance improvements

in recent years. However, as shown in Fig. 9, this problem

is still far from being completely solved. A critical question

here is whether the models trained with present data sets will

generalize to the situations present in real-life operation. The

cross-dataset experiments performed reveal the existence of a

significant data set bias in present benchmarks that limit the

generalization of models trained with them. So, further work in

this direction is required to improve the performance of present

face alignment algorithms.

Acknowledgments: The authors gratefully acknowledge fund-

ing from the Spanish Ministry of Economy and Competi-

tiveness, project TIN2016-75982-C2-2-R. They also thank the



14

(a) 300W public

(b) 300W private

(c) COFW

(d) AFLW

(e) WFLW

Fig. 9. Representative results considered errors using 3DDE in 300W, COFW, AFLW and WFLW testing subsets. Blue colour represents ground truth,

green and red colours point out visible and non-visible shape predictions respectively.
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