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Abstract

We introduce a multi-view direct procedure for efficientiptking 3D ob-

jects. Itis an extension of Hager and Belhumeur’s facttioieaapproach to
the case of three-dimensional objects and multi-cametg s&y tracking a

3-D object we mean to estimate the pose and location of thecotijrough

a video sequence. A novel parameterisation of the objettireallow us

to compute the Jacobian that emerges in the minimisatiogpeddently of
camera pose. A remarkable feature of this Jacobian is theasftared by all
cameras and a large part of it is constant. The pixels viewezhbh camera
determine the rows of the Jacobian used for tracking. Weparfualitative

and quantitative experiments confirming the validity of #pgroach.

1 Introduction

Efficiently tracking 3D objects has been a topic of interas€tomputer Vision for years,
with applications in augmented reality, advanced humanhine interfaces and robotics.
Tracking is achieved by estimating the parameters of a fomecepresenting the relative
position between camera and object. This can be achievedtmhing a sparse collection
of features (feature-based approaches) or by directlymigimg the difference in image
intensity values (direct approaches). The main advantadeature-based approaches
is the possibility of working with very large inter-frame tian [8]. This make them
best suited for target detection or for recovery after a detedoss. Direct approaches
assume that inter-frame motion is small, as is the case ieoviequences. Tracking
is usually posed as a Gauss-Newton-like optimisation E®ceinimising a similarity
measure between a reference model and the target regioffigjr main advantage is
accuracy, since usually all pixels in the region contriltotéhe estimation. This is a key
feature, for example, for applications in virtual realityderobotics in which tracking jitter
must be minimised.

Many applications of tracking (e.g. robot navigation [7liganented reality, face
tracking [6]) also require real-time video processing ¢dlfees. So far, two main re-



search paths have have been explored to increase the efficiedirect image alignment
methods:

a) Reduce the computational co$he computational cost of each Gauss-Newton iter-
ation can be reduced by precomputing part of the image Jacohs done by Hager
and Belhumeur [6], or all of it, as in Baker and Matthews’ Irse2sCompositional
Image Alignment (ICIA) algorithm [1]. Computational regeiments may also be
lowered by discarding pixels that do not contribute sigaifitty to the minimisa-
tion. These pixels are normally located in low-texturedgeaegions [4].

b) Improve the convergence propertiédficiency has also been improved by increas-
ing the convergence rate of the minimisation algorithm. lBerane and Malis [3]
propose the Efficient Second order Minimisation proced®&8M) which con-
verges faster and with a larger convergence region thangadexston, without the
need of computing the Hessian matrix. Faster convergeeeana larger conver-
gence region may also be achieved by selecting pixels whidhnthe assumption
of linearity w.r.t. the motion parameters in the minimisat{2].

In this paper we introduce a multi-view direct procedurediciently tracking 3D
objects. It is an extension of Hager’s [6] factorisation @aeh to the case of three-
dimensional objects and multi-camera setup. Our factioisas closely related to the
solution introduced by W. Sepp in [10]. His tracker, nevel#ss, only works in the
vicinity of the reference image. Our tracker is based on a Iidehof the target. It is
composed of a textured 3D point cloud, which is valid for aglative orientation between
camera and object.

Most previous approximations to 3D tracking are monocudat,a number of recent
approaches are based on multiple views. Devernay et al.sfpJauLucas-Kanade-like
procedure to track both 3D points and texture patches (surfa [11], pose is computed
from both point matching and similarity measures from ofelkey-frames (images) of
the target. Baker et al. determines object’s motion simelbaisly from several cameras
using an Active Appearance Model (AAM) on each camera cairsd globally by a
single 3D model [9].

In our multi-view procedure, tracking is based on a diregrrapch that minimises the
discrepancy between the sequence of image values and tHapeénsities (texture) of the
target. This texture and its derivatives w.r.t. object’stimowill be defined for each 3D
point (vertex) of the object, even for those not visible ia finst frame of the sequence (as
opposed to [10] and [5]). These derivatives, crucial for 3@tion estimation, will also be
independent of the camera position, which enables us tonyselanber of cameras with
a single Jacobian. In our approach, each target point hasiat=d one texture derivative.
Each camera determines the subset of object points thaissloéevto the tracker and will
be used for tracking.

The paper is organised as follows: Section 2 introduceshijecbmodel and notation
used through the paper. The efficient estimation proceaurad motion is presented in
Section 3, and expanded with annotations in appendix A.i@edtdeals with the multi-
view extension. Finally, in Sections 5 and 6 we describe #peements conducted and
draw conclusions.
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Figure 1: (a) Example of virtual cameras around the objeetchEcamera optical axis
is oriented along the vertex normal attached to it. (b) Textwap for numbered cube.
Notice that the texture covers all possible views of the ctbje

2 Model Description

Let.# be our object model# = {¥,.7}, composed of 3D points (vertices) and inten-
sity values (texture). The set of model vertices is defined’by {x; € R3|i = {1,...,V}},
where each pointis expressed in terms of a scene coordirsaenswith origin aD. Each
object vertex has a texture value, defined%s= {T[xi| € R|i = {1,...,N}}, by means
of atexture map T R3 — R. Figure 1 shows both the texture object and its texture map
represented as an image.

The object pose and location are parametrically definedrpiEon mode(or warp)
f € SE(3). Motion in 3D is represented as a rigid body transformatidth & rotationr €
SO(3) and a 3D offset € R3: xi = Rx; +1,Vx;. Of course, both rotation and translation
are common to the whole set of object’s vertices. Rotatiotrices are parameterised
with an exponential map = (w, wy, w,) . These values are stacked together with the
translation values in a parameter vectoe R®: p = (w',tty,t,) . Let li[u] be the
intensity value at the pixel locatiamof the image acquired at tinte Under Lambertian
assumptions, the followingrightness constanagquation holds

TIx] = Tt[p(f(x, )], @)

where vectoll; is the result of stacking the intensity values of the prafet of each
vertexx; in imagel;. The same applies fb. Vertices are projected onto the image plane
using an orthogonal projection functignthat depends on the known camera intrinsics.



2.1 Texture equivalence

Now, we will derive the constancy equation using an altermepresentation for the tex-
ture values of the object. We will use a set of virtual caméaae per point) such the
image intensities resulting from the projection of eachnp&iquals the texture values
for that vertex. This is similar to Fua’s key-frames reprgagon, [11], but having one
(virtual) key-frame per object vertex.

Let us suppose now that we haMerthogonal cameras around our object represented
by the location of their optical centre€;,i = 1...N. Each camera has its optical axis
aligned with vectomn;, the normal to the point; (see Figure 1). Poirg; is expressed in
the reference coordinate system of can@yasx; using

x! = @;(xi) =RjXi —Rjt;, B
o Ly nTyd ot
Xi=@; " (X[) =Rj X +1j,

whereg; € SE(3) is arigid body transformation between both coordinateesyst which

is given by a rotatiom; € SO(3) and a translatiot; € R3. Note that poimxij always has

the formxiJ = (0,0,z)" (expressed in camera coordinates). Lidte the image captured
by C;. Points are orthogonally projected onto the image plane &g of functiorp;,
which depends on the camera intrinsics. Each camera maydifeerent intrinsics. Point
xi' is projected onto the principal point bf, so its intensity values equals the texture value
of the vertex. _

Tixi] =1j[p;(X)]  vx. (3)

Combining equations (1), (2) and (3) results in a new brighsnconstancy equation
expressed in terms of each virtual cam€&ra

1i[p; (X)) = L p(F(@] 1)), )] X!, 4)

whereyy, is the vector of parameters that optimally correspond twtiject pose for time
t.

Using the above assumption, we can pose our tracking probléanms of a minimi-
sation of the motion parameteus

gm/(u) = [I15[py (1] = Teralp(f(@y 1K), ke )12 (5)

Assuming incremental changes in our motion parametersdegtwivo consecutive time
instants, we can rewrite equation (5) as

fg;?f(u) = (115 (X)) = 1 P(F(@5 (X)), e + S )] (6)

Making a Taylor series expansion(at,,t), we can rewrite the right term of (6) as

lt[p(f(e; H(x)), )

2
i 5y ™

H=H

min 7 (1) = |le(t) -
Hy

J(t)



where ana(t) is the vector of image differences(t) = I [p; (x))] — I [p(f(@; " (X)), uy +
oH,))], andJ(t) is the Jacobian matrix relating the instantaneous changeaxfe values
with the motion parameters, both at time instarwith least-squares we can compute the
minimum of # asép, = (J(t) T J(t))"13(t) Te(t). Usually, this estimation is iteratively
refined (Gauss-Newton minimisation) until a stop criteli®reached.

3 Efficient Tracking

The major limitation of the tracking procedure describedvahis the computational cost
of recomputing the image derivatives for each image in tlyggisece, since the Jacobian
matrix J(t) depends orl;. We will alleviate this computational burden extending the
factorisation scheme proposed in [6] to the case of a 3D tedtobject. The key idea
here is to express intensity changes due to object’s matiterins of the texture map of
the object instead of the image values at instarfiaking derivatives in (4) w.r.tx] we

have, i i
d1j[p;(X)] _Olp(f(@; H(X), y))] @)
aX X oX R
And applying the chain rule to the right side of (8) leads us to
Iifp(F(@ " (X))l | lan[p(ﬁ)] ] . [df(\?,ut) ]
2 K OF  le—t(p;20d)m) oY N—g i)
997 X) ]
X sy
©)

We can move the two rightmost regular matrices of (9) to theeoside of equation,
resulting in

[ampgﬁ)] ] N lan[pw ] [0 %) ]l
oF ﬁ:f((p].*l(xj)’ut) oX X=xl oX X=xi (10)
oY [¥=gix)

On the other hand, we can expand) using the chain rule,

] | 9f(e (), )
F—f( L0 ).bt) ou

INote here that we assume that there is an extensioAn of thedexdlue out of the object surface, so the
derivative exists. Since our projection is orthogo 2 ,k[gkz(x)]

Olt[p(f(@; *(x)), u))]
ou

. lampgﬁn
oF
H=Ht

Hﬂt]

(11)

= 0 for any point on the object surface.
X=xK




Plugging equation (10) into (11) results in a expressionyftrat does not depend dp

ofp(f(g; (x)). )] %[au[pgfo]‘ ] 29, (X) ]1
ou - OX |3 OX |5y
Jofv. ) ]1. {(CONT)
oY V=gt oH p=1
12)

This equation can be further refined so our Jacobian matribearepresented dgt) =
MpoZ(t). Matrix Mo is such that it depends on the vertices and the texture magreat(t)

is a matrix that depends on the motion parameters and thergfmust be recomputed
for eacht. Details on derivation can be found in appendix A. Optimabpaeters at time
t are efficiently computed as

Spy = (Z(t) (Mo Mo)Z(t)) TE(t) Mg e(t). (13)

Notice that the largéN x 30 matrixMp is constant whereas time-changib(}) is just
30x 6 size, so finding our optimum has been considerably speguied much of these
values can be precomputed.

4 Multiple Camera Tracking

From equation 7?),we know that the Jacobian matrix is defined for the wholea$et
vertices of the object, but at time instdrdnly a portion of them are visible. This implies
that only some rows ofi(t) will be used: those corresponding to the visible vertices
projected ontd;. Let us suppose we have two or more cameras. Detailed ingpexft
equation ??) shows that matrixi(t) does not depend on the camera position at tirbert
on the pose of the virtual cameras and the texture map valles, at time instaritwe
could use those rows dfit) that are deemed as visible points at each camera. Figure 2
shows the visibility map for the camera setup of Figure 1.

Again, from (?), the matrix rowJ(t); at timet depends only on the texture mag
iff equation (8), the derivative of the brightness consyaholds. This is only true when
the imagd; corresponds to the virtual camera attachex] td hus, for each given camera,
we could only use those rows oft) corresponding to points whose normal have the same
orientation of the optical ray of the camera. However, we redax the condition on the
brightness constancy so that a larger number of rows perreaane selected. The larger
the angle difference between the optical axis and the poimhal, the lesser the accuracy
of the brightness constancy assumption,and hence, thewalise the approximation
to our true Jacobian matrix. On the other hand, notice tteatrtbre cameras we have, the
more rows ofI(t) will be available, and hence, the better will be the tracking

Notice as well that some terms from (13) must be recomputeddoh time instant
because of changes of the visibility of the vertices. Howekecomputing consist of
deleting or adding rows afp and then operating between the matrices but the values of
Mp remain constant.
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Figure 2: (a) Views from the cameras located as describedguré 1. (b) Visibility
map for computing matrix(t) at the given setup. The vertices that are not visible in any
camera are overlaid in blue.

5 Experimental Validation

The goal of these experiments is to empirically validateagorithm. This is achieved
by using a sequence of synthetically created images wherelject's motion is known
with absolute accuracy. The sequence is 600 frames longangréses a textured cube
simultaneously rotating and translating in the three akioordinates.

The cube is 100 units side and has a Gaussian pattern witfeegedif number attached
to each face (see Figure 1) and it is placed at the origin obte®e reference system.
We simulate four cameras located at 4000 units from the blbjedifferent orientations
(again, see Figure 1). Initially, each camera looks at @#fiit face of the object and they
all share the same intrinsics. We simulate a orthographifeption camera by using a
focal length of 2nmtogether with the considerable object-to-camera distafice cube
spins 360 degrees around each one of it axis of rotation wghilelltaneously translates
through the scene. Snapshots of several frames are shoviguire 3.

For each frame of the sequence we compute the motion panametieg the pro-
posed algorithm. The iterative procedure minimises thautexvalues corresponding to
each visible vertex with the images values captured froffieidint cameras. Qualitative
results are presented in Figure 3. We overlay onto each iraatfee sequence a wire-
frame model of the object. The model is placed using both tloeirgd-truth and the
estimated values of the motion parameters, which allow gsmapare them visually. We
also present quantitative results in Figure 4, where wegstmind-truth parameter values
against the estimations computed from the algorithm. Egton for rotation parameters
is quite accurate whereas the 3D offset is precise enouglo#t of the sequence. Notice
that the estimated values diverge from the ground-trutisdone frames, i.e., the “valley”
of ty. This is caused by a special configuration of the cube’s faccagich the normal of
all six faces depart considerably from the four camerasapéixes. In this casé(t) is
not accurately estimated.
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Figure 3: Selected frames from the synthetic sequence. Eaclorresponds to a dif-
ferent camera which, initially, looks at a different facetleé cube. We overlay onto each
image a wire-frame model of the object using the grounditpatrameters (solid magenta)
and the estimated ones (solid blue).

6 Conclusions

We introduced an algorithm for efficiently estimating the Bidtion of a known target
using multiple orthogonal cameras. The algorithm is effitiince a major portion of
the Jacobian involved in the minimisation is precomputedeamains constant over time.
The algorithm relies on an object model based on a texturedf siject points, which
is independent of the camera pose. This allows us to precngffdline the relationship
between object’s motion and the change in image intengttiesmage Jacobian matrix),
even for points of the object that are not initially visiblgloreover, we can extend this
approach to multiple cameras due to the independence oatlobiin matrix of the cam-
era pose. For this to be true, some constraints must be sdtisfj the cameras must be
orthographic; b) only those pixels whose normal orientatioincides (or is close to) that
of the camera optical axis are eligible for tracking. Negtegthis constrains leads to a
loss of accuracy in the tracking.
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A Derivation of the Factorisation Scheme

Equation (12) can be further simplified using the definititordboth constancy equations
and functions and ;. Firs, we assume that derivatives onto the image plane aral eq

_ | atjlp;(X
to derivatives onto the texture map, |e{%[§)’<g

] = 0Ty, for object vertex

%x)

- -1
i. From our warp definition we have th tM =R(t)", and from
0Y ?:(prlO(J)

1
00
equation 2,[*~— ] =Rj. Taking partial derivatives of the warp function
X=xi

w.r.t. the motion parameters we can rewrite itheth row of equation (12)J;, as

R(& OR(& OR(G&
Ji (t) = DTleJR(t)T aa((’?&&) i a(’(‘}%/) X 0(&‘(:2) Xi|I3].
De=ax(t) o=y Dr=en(t)
(14)
We can reorder this equation as a matrix multiplication anfthrm:
x¥ 0 o0 x' 0o o x' o o 100
J=0TxRj| 0 x' 0o o x' o o x o 0 1 0
0 0o x'" o o x o o x 001
vec(R(t) TRyy) 0 0 0
=
0 vec(R(t) Rey ) OT_ 0 . as)
0 0 vec(R(t) Rey(t)) 0
0 0 0 R(t) "

where0 is a padding matrix of zeros of the appropriate size @ne(4) is the vectorised
form of matrixA. Derivatives of the rotation matrix are expressed in datfdre. Re, 1) =

%@ . Notice that the rightmost matrix depends on the motionmpatars at
o x=wx(t)

timet, but is common to every single vertex in the object. This matill be known as
Z(t). The leftmost matrix depends only on the th vertex of the object and its texture.
We can stack all these matrices into a constant mag;isuch that = MpZ(t).



