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Abstract

One of the major challenges that visual tracking algo-
rithms face nowadays is being able to cope with changes
in the appearance of the target during tracking. Linear sub-
space models have been extensively studied recently and are
possibly the most popular way of modeling target appear-
ance. Unfortunately, efficiency is one of the limitations of
present linear subspace models, and this is a key feature for
a good tracker. In this paper we present an efficient proce-
dure for tracking based on a linear subspace model of target
appearance (grey levels). A set of motion templates is built
from the subspace base, which is used to efficiently com-
pute target motion and appearance parameters. It differs
from previous works in that we impose no restrictions on
the subspace used for modeling appearance. In the experi-
ments conducted we have built a modular PCA-based face
tracker which shows that video-rate tracking performance
can be achieved with a non optimized implementation of
our algorithm.

1 Introduction

Tracking plays a fundamental role in many important
applications of computer vision such as intelligent human
computer interaction, autonomous robot guidance or video
processing. One of the major challenges that visual track-
ing algorithms face nowadays is being able to cope with
changes in the appearance of the target during tracking.
These appearance changes can be caused by a variation in
the illumination, an occlusion or a change in the aspect of
the target itself caused by a change of pose or, for example,
in the case of face tracking, by a change of facial expression.
Tracking algorithms try to accommodate these variations by
modeling target appearance in various ways. Some use tex-
ture [14], color [6] or shape [13] statistics, or both [4], oth-
ers employ textured 3D models [17], and finally, many use
linear subspace models of texture [5, 12] or shape and tex-

ture [8]. In this paper we will present an efficient algorithm
for tracking which models changes in appearance with a lin-
ear subspace model of texture.

Linear subspace models are possibly the most popular
way of representing appearance. Images of a target lie
in a low dimensional manifold or subspace whose dimen-
sions represent the underlying degrees of freedom of the
imaged object. For example, the images of an eye lie on
a three dimensional subspace, one dimension associated to
the amount of eye aperture and the other to the orienta-
tion of the pupil. The popularity of these models comes
from their simplicity and computational efficiency and be-
cause they have been thoroughly studied within the pattern
recognition and statistics communities. In computer vision
they have been successfully used for recognizing 3D ob-
jects under varying pose [19], representing and recogniz-
ing faces [3, 25], tracking with illumination changes [12]
or with changes in pose [5], and tracking of deformable ob-
jects [24], among many others.

Normally, the relationship between the input image and
the manifold is nonlinear, but useful results have been ob-
tained using linear mappings between them. Principal Com-
ponent Analysis (PCA) and Factor Analysis (FA) are two
examples of this. Principal Component Analysis (PCA) can
be obtained as the eigenvectors of the sample covariance
matrix associated with the largest eigenvalues. This has
proven to be an excellent tool for dimensionality reduction
of multivariate data, hence, if and image is considered to be
a multivariate datum, PCA can be a useful tool for mani-
fold construction. Here we will use PCA for modeling the
subspace of appearances of our target, a human face, under
different facial expressions.

Several extensions to conventional linear models have
been proposed over time. For example, Independent Com-
ponent Analysis (ICA) is an attempt to attain independence
among the components of a multivariate vector [7]. In cases
where linear subspace models do not suffice, mixtures of
linear models [23, 10, 11] or Locally Linear Embedding
(LLE) [20] techniques can be used.
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One of the major limitations of PCA is that it needs nor-
malized sample images in the training data. This means that
images have to be normalized and geometrically aligned
both when building the subspace model and when project-
ing incoming images onto it. This has been solved either by
using subspaces [16] and projection procedures [21] which
are invariant to these geometrical transformations or by ro-
bustly registering the images [9, 22].

Efficiency is an important limitation of present subspace
models, which has not drawn much attention so far, with
the exception of [12]. Very often tracking algorithms have
to perform in real-time, as the flow of images reaches the
computer vision system. Although some recent works claim
to achieve near real-time performance [9], none has consid-
ered the issue of efficiency. In this paper we present an effi-
cient procedure for tracking using a linear subspace model.
During the training phase of our algorithm motion templates
associated to the subspace image base are computed, so that
a smaller number of calculations have to be made during
tracking.

Motion templates have been successfully used previ-
ously for real-time tracking [17, 12], but they used models
which could not deal with some changes of target appear-
ance. For example, in the case of face tracking, a restricted
subspace model was used in [12] to achieve robustness to
illumination changes, which could not be used to model a
change of facial expression.

The tracking algorithm presented in this paper can be
seen as an extension of the one introduced in [12] in that we
impose no restrictions on PCA-based subspace model used.
It is also related to [5], but instead of computing the motion
parameters by using a gradient descent procedure in which
the target image Jacobian must be computed for each frame
in the sequence, as in [5], we use a set of precomputed mo-
tion templates which alleviate the computations that have to
be performed online.

Throughout the paper we will denote scalars with low-
ercase letters, vectors with lowercase letters with a bar on
them (e.g. x̄,µ̄) and matrices with uppercase boldface let-
ters (e.g. B).

2 Factored eigentracking

Let P be the image of a target. The subspace constancy
equation holds for all pixels in the target [5]:

I(f(x̄, µ̄), t) = [Bc̄(t)](x̄) ∀x ∈ P, (1)

where x̄ is the vector of co-ordinates of a point in image I,
B is the subspace base matrix, c̄ is the vector of subspace
coefficients, and I(f(x̄, µ̄), t) is the image acquired at time
t rectified with motion model f(x̄, µ̄) and motion parame-
ters µ̄. By [Bc̄](x) we denote the value of Bc̄ for the pixel

with position x̄ in the image. Matrix B is of dimension
N × k, where N is the number of pixels per image and k is
the number of basis vectors in the subspace. Intuitively (1)
states that the rigidly rectified image I(f(x̄, µ̄), t) can be ex-
pressed as a linear combination of the appearance subspace
basis vectors, B1

Tracking consists on estimating for each image in the
sequence the values of the motion, µ̄, and appearance, c̄,
parameters which minimize the error function

E(µ̄, c̄) = ||I(f(x̄, µ̄), t) − [Bc̄(t)](x̄)||2. (2)

In order to robustly estimate the minimum value of (2),
the quadratic error norm can be replaced by a robust one
(e.g. [5, 12]).

In general, minimizing (2) can be a difficult task as it de-
fines a non-convex objective function. Several procedures
have been proposed to solve this problem, which can be
grouped into those using gradient descent [5] and those us-
ing Gauss-Newton iterations [12, 2, 15]. Black and Jepson
[5] presented an iterative solution by using a gradient de-
scent procedure and a robust metric with increasing reso-
lution levels. Computationally, their algorithm is quite de-
manding as, for example, the Jacobian of each incoming
image has to be computed once on every frame for each
level in the multi-resolution pyramid.

In order to make Gauss-Newton iterations, a Taylor se-
ries expansion of I at (x̄, t) is performed, producing a new
error function

E(δµ̄, c̄) = ||Mδµ̄ + ī(f(x̄, µ̄)) − Bc̄||2, (3)

where ī(x̄) is I(x̄) in vector form, and M = ∂ī(f(x̄,µ̄))
∂µ̄

is
the N × n (n = dim(µ̄)) Jacobian matrix of ī (note that
dependence on t has been dropped for convenience). Hager
and Belhumeur [12], in the context of invariance to illumi-
nation changes, introduced an efficient procedure for min-
imizing (3) by assuming ∇x̄[Bc̄](x̄) ≈ 0. In this case M

can be expressed in terms of the gradient of a fixed tem-
plate image and can be partially precomputed off-line. The
result of this off-line computation is a set of parametrized
motion templates, which only depend on µ̄, and can be used
to efficiently track a planar object. In general, the previ-
ous assumption is not valid, and the computed motion tem-
plates can not be reliably used for tracking objects whose
appearance changes due to causes other than illumination
(e.g. changes in pose). In the following subsections we
will introduce a procedure for precomputing a set of mo-
tion templates which efficiently minimize (3) for any linear
subspace model.

1We assume that that the average image has been included as the first
column of B.
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2.1 Jacobian matrix factorization

One of the obstacles for minimizing (3) online, while
tracking, is the computational cost of estimating M for each
frame. In this subsection, following an approach similar
to [12], we will show that M can be factored into the prod-
uct of two matrices, M0Σ(µ̄, c̄), where M0 is a constant
matrix, which can be computed off-line.

Each element mij of M can be written as

mij = ∇f̄I(f(x̄i, µ̄j), tn)>fµ̄(x̄i, µ̄j). (4)

Taking derivatives w.r.t. x̄ on both sides of (1) we get

∇f̄I(f(x̄i, µ̄j), tn)>fx̄(x̄i, µ̄j) = ∇x̄[Bc̄(t)](x̄). (5)

Finally, from (4) and (5) we get a new expression for M,

M(µ̄, c̄)=






(
∑

j ∇x̄[b̄jcj ](x̄1))
>fx̄(x̄1, µ̄)−1fµ̄(x̄1, µ̄)

...
(
∑

j ∇x̄[b̄jcj ](x̄N ))>fx̄(x̄N , µ̄)−1fµ̄(x̄N , µ̄)




 ,

(6)
where b̄j is the jth column of B and cj is the jth element of
the appearance vector c̄.

Let

B∇(x̄i)=











∇u[b̄1](x̄i)
...

∇u[b̄k](x̄i)






>

,






∇v[b̄1](x̄i)
...

∇v[b̄k](x̄i)






>


 (7)

and

C =

[
c1 · · · ck 0 · · · 0
0 · · · 0 c1 · · · ck

]>

, (8)

where u and v are the horizontal and vertical image co-
ordinates respectively. Then (6) can be finally rewritten as

M(µ̄, c̄) =






B∇(x̄1)Cfx̄(x̄1, µ̄)−1fµ̄(x̄1, µ̄)
...

B∇(x̄N )Cfx̄(x̄N , µ̄)−1fµ̄(x̄N , µ̄)




 . (9)

Therefore M can be expressed in terms of the gradi-
ent of the subspace basis vectors, B∇, which are constant,
and the motion and appearance parameters (µ̄, c̄), which
vary over time. If we choose a motion model f such that
Cfx̄(x̄i, µ̄)−1fµ̄(x̄i, µ̄) = Γ(x̄i)Σ(µ̄, c̄), then M can be
factored into

M(µ̄, c̄)=






B∇(x̄1)Γ(x̄1)
...

B∇(x̄N )Γ(x̄N )




Σ(µ̄, c̄)=M0Σ(µ̄, c̄),

(10)
where M0 is constant matrix and Σ depends on c̄ and µ̄.
The columns of M0 are the motion templates of our track-
ing algorithm.

2.2 Minimizing E(µ̄, c̄).

As M depends on both, µ̄ and c̄, (3) defines a nonlinear
cost function over δµ̄ and c̄. The optimization algorithm that
we use first assumes c̄ constant and computes the minimum
of E(µ̄, c̄) w.r.t. µ̄,

δµ̄ = −(Σ>MΣ)−1
Σ

>
M

>

0 [̄i(f(x̄, µ̄), t + τ) − Bc̄(t)],
(11)

where M = M
>
0 M0. Then it minimizes E over c̄ assuming

µ̄ constant,

c̄ = B
>[Mδµ̄ + ī(f(x̄, µ̄), t + τ)]. (12)

The term Mδµ̄ is the grey level variation in I due to a mo-
tion of magnitude δµ̄. Intuitively equation (12) states that
the appearance parameters are computed by projecting onto
the subspace the rectified image corrected to take into ac-
count the incremental motion δµ̄. Once we have c̄, we can
refine the estimation of δµ̄ by using (11) again. Normally
two or three iterations over this process are enough to reach
a stable solution.

In summary, the steps of our tracking algorithm are:
• Off-line:

1. Compute the basis images gradients, ∇[bi](x̄).

2. Compute all Γ(x̄) matrices.

3. Compute and store M0.

4. Compute and store M.

• Online:

1. Warp I(z̄, t + τ) to compute I(f(x̄, µ̄t), t + τ).

2. Build the reconstructed image vector, Bc̄(t).

3. Compute E = [̄i(f(x̄, µ̄t), t + τ) − Bc̄(t)].

4. Compute Σ.

5. Compute Σ
>
M

>
0 .

6. Compute Σ
>
M

>
0 E .

7. Compute (Σ>MΣ)−1.

8. From (11) compute δµ̄t+τ .

9. From (12) compute c̄(t + τ) using δµ̄t+τ .
Let k the number of basis vectors, n the number of mo-
tion parameters and N the number of pixels in the region
to track. Then the computational cost of the off-line part of
the algorithm is shown in table 1.

Step (1) Step (2) Step (3) Step (4) Total
O(kN ) O(kN ) O(k2nN ) O(k2n2N ) O(k2n2N )

Table 1. Computational cost of the off-line
part of the factored eigentracking algorithm.

The time required to make an iteration of the online part
is shown in table 2. The total time comes mainly from steps
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(5), O(kn2N ), and (7), O(k2n3). Only when the number
of pixels, N , is very low (typically 10×10 images) step (7)
dominates the computation time. When using images of
size 20×20 and above, most of the time is spent multiply-
ing and transposing the Jacobian matrix, (ΣM0)

>. By op-
timizing the matrix to matrix multiplication procedure we
could improve the performance of this step.

Step (1) Step (2) Step (3) Step (4) Step (5) Step (6)
O(nN ) O(kN ) O(N ) O(k) O(kn2N ) O(nN )

Step (7) Step (8) Step (9) Total
O(k2n3) O(n2) O(kN + nN ) O(kn2N + k2n3)

Table 2. Computational cost of the online part
of the factored eigentracking algorithm.

2.3 Some usual motion models

In this subsection we will show how the previous track-
ing algorithm can be used with some motion models com-
monly used in computer vision.

2.3.1 Rotation, translation and scale model

This motion model can be described by four parameters,
µ̄ = (θ, tu, tv, s), corresponding to rotation, translation
and scale, f(x̄, µ̄) = sR(θ)x̄ + t̄, where x̄ = (u, v)>,
t̄ = (tu, tv)> and R(θ) is a 2D rotation matrix. Taking
derivatives of f with respect to x̄ y µ̄,

fx̄(x̄, µ̄) = sR(θ), (13)

fµ̄(x̄, µ̄) =

[

I2×2 | − sR(θ)

[
−v
u

]

|R(θ)

[
u
v

]]

, (14)

where the Id×d is the d×d identity matrix. Introducing (13)
and (14) into (9), we get the factorization:

Γ(x̄i) =

[

I2k×2k,

[
−viIk×k uiIk×k

uiIk×k viIk×k

] ]

,

Σ(c̄, µ̄) =





C
1
s
R(−θ) 0

0 C

[
1 0
0 1

s

]



 .

For this model M0 has dimensions N × 4k and Σ, 4k × 4.

2.3.2 Affine model

The 2D affine motion model can be written as f(x̄, µ̄) =
[

a c
b d

]

︸ ︷︷ ︸

A

x̄ +

[
e
f

]

, where A is a nonsingular matrix and

µ̄ = (a, b, c, d, e, f)> are the six model parameters. Taking
derivatives of f with respect to x̄ and µ̄,

fx̄(x̄, µ̄) = A, fµ̄(x̄, µ̄) = [I2×2|xI2×2|yI2×2]. (15)

From (15) and (9), we get the desired factorization:

M0 =






B∇(x̄1)(I2k×2k|x1I2k×2k|y1I2k×2k)
...

B∇(x̄N )(I2k×2k|xNI2k×2k|yNI2k×2k)




 ,

Σ =





CA
−1 0 0

0 CA
−1 0

0 0 CA
−1



 ,

where M0 has dimensions N × 6k and Σ has 6k × 6.

2.3.3 Projective model

Let x̄ = (u, v)> and x̄h = (r, s, λ)> be respec-
tively the Cartesian and Projective coordinates of an im-
age pixel. They are related by: x̄h = (r, s, λ)> → x̄ =
(r/λ, s/λ)> = (u, v)>; λ 6= 0. The 2D projective linear
transformation can be written as

f(x̄h, µ̄) = Hx̄h =





a d g
b e h
c f 1









r
s
λ



 ,

where µ̄ = (a, b, c, d, e, f, g, h)>. Now B∇(x̄i) has an ex-
tra set of columns associated to the gradient of the homoge-
neous coordinate2,

B
P

∇(x̄i)=











∇r[b̄1](x̄i)
...

∇r[b̄k](x̄i)






>

,






∇s[b̄1](x̄i)
...

∇s[b̄k](x̄i)






>

,






∇λ[b̄1](x̄i)
...

∇λ[b̄k](x̄i)






>




(16)
and matrix C is

C
P =





c1 · · · ck 0 · · · 0 0 · · · 0
0 · · · 0 c1 · · · ck 0 · · · 0
0 · · · 0 0 · · · 0 c1 · · · ck





>

.

Taking derivatives of f with respect to x̄h and µ̄,

fx̄h
(x̄h, µ̄)−1 = H

−1, (17)

fµ̄(x̄h, µ̄) = [rI3×3 | sI3×3 |λI1−2], (18)

where Xa−b is the matrix composed with rows a to b of X.
Then, from (16–18) and (9) the factorization of M arises:

M0 =






B
P

∇(x̄1)(r1I3k×3k|s1I3k×3k|λ1I3k×3k)
...

B
P

∇(x̄N )(rNI3k×3k|sNI3k×3k|λNI3k×3k)




, (19)

2∇x̄h
I(x̄h)=

[
∂I

∂u
, ∂I

∂v
,−u ∂I

∂u
− v ∂I

∂v

]>
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Σ =





C
P
H

−1 0 0
0 C

P
H

−1 0
0 0 C

P
H

−1

1−2



 . (20)

Now the dimensions of M0 and Σ are N × 9k and 9k × 8
respectively.

3 Modular factored eigentracking

A modular eigenspace is a partition of the original data
vector into subsets (modules) in order to compute an in-
dependent subspace model for each of them. This allows
a more flexible, compact, accurate and better conditioned
model of the regions of interest [9]. We will consider that
all the regions are part of the same object and hence that
they share the same motion parameters increment but could
have different appearance. In our case we will use different
subspace models for each of the eyes and the mouth.

Let {B1, · · · ,Br} be the set of subspace basis for all
modules. Then matrix Bme for modular eigentracking can
be written as:

Bme =






B1 0 0
...

. . .
...

0 0 Br




 , (21)

which is a block diagonal matrix representing the dis-
joint sets of regions which compose the image. The ap-
pearance of each region is modeled by subspace base Bi.
Therefore, the appearance parameter vector will be c̄ =
(c̄>1 , · · · , c̄>r )>, where c̄i is the parameter vector of mod-
ule i. When computing M0, the gradients of Bme are ob-
tained independently for each Bi and, as before, introduced
in B∇. Finally, gi(µ̄) is a function that relates the motion
parameters of module i to a common reference system. The
factored modular eigentracking algorithm is as follows:
• Off-line:

1. Compute and store M0 using Bme.

2. Compute and store M.

• Online:

1. For each region i do:

a) Warp I(z, t + τ) to I(f(x, gi(µ̄t)), t + τ).
b) Ei =[̄i(f(x̄, gi(µ̄t)), t + τ) − Bic̄i(t)].

2. The error term is now E = (E>
1 , · · · , E>

r )>.

3. Compute Σ(c̄(t), µ̄t).

4. From (11) compute δµ̄ using the new E .

5. From (12) compute c̄(t + τ) using δµ̄ and Bme.

6. Update µ̄t+τ = µ̄t + δµ̄.

7. Update each c̄i vector from c̄(t + τ).

Figure 1. Some samples from the sequence
used in the first experiment.

4 Experiments

We have implemented our algorithm in C++ in a
GNU/Linux environment. We used the INTEL IPL (Im-
age Processing Library) routines for image warping and the
dgemm BLAS routine for matrix multiplication (in the AT-
LAS optimized version for Pentium IV). No other special
optimization has been made in the current code. The com-
puter in which the tests were performed is a Pentium IV
2.4 GHz with 512 KBytes of cache and 512 MBytes of
DDR memory. The image sequences were acquired with a
Sony VL500 and a Unibrain Fire-i (the fourth experiment)
firewire cameras.

In the first experiment the performance of the algorithm
is tested in terms of time needed to make an iteration with
different motion models (n), number of pixels (N ), and
subspace dimension (k). In this case we used a sequence
with 595 images with both eyes and eyebrows (see Fig. 1).
The time per iteration in milliseconds is shown in table 3.

In table 4 we show the frame rate achieved when the al-

N=136 × 56 N=68 × 28
k=7 k=13 k=44 k=7 k=13 k=39

Projective (n=8) 29.9 41.1 98 5.6 7.7 16.9
Affine (n=6) 20.3 28.8 71.6 4.1 5.2 11.5
RTS (n=4) 14.3 21.5 57.1 3.3 4.3 8.6

Table 3. Time per iteration in milliseconds.

gorithm performs two Gauss-Newton iterations per frame.
With the proposed algorithm we can achieve standard video
rate performance with any 68×28 pixels patch whose ap-
pearance could be modeled with a subspace of dimension
smaller than 40. Also, given the special structure of the
gray levels of a human face, which is mainly made up of
low-frequency components, it can be safely tracked with a
low dimensional subspace (e.g. k=7) for which frame rates
ranging from 16.7 f.p.s to 151.5 f.p.s can be achieved, de-
pending on the number of tracked pixels (N ) and on the
motion model complexity (n).

In the second experiment we show the performance for
a projective motion model. The training sequence used for
PCA (the same as the first experiment) is different from the
one used for tracking. In this case the subspace dimension
was 13, the size of the image patch was 68x28 and the frame
rate achieved with three Gauss-Newton iterations per frame
was 32 f.p.s. The difference from the 65 f.p.s. shown in
table 3 for two iterations, is mainly due to the overhead
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N=136 × 56 N=68 × 28
k=7 k=13 k=44 k=7 k=13 k=39

Projective (n=8) 16.7 12.1 5.1 89.3 65 29.6
Affine (n=6) 24.6 17.4 7 122 96.1 43.5
RTS (n=4) 35 23.3 8.8 151.5 116.3 58.1

Table 4. Frames per second with two itera-
tions per frame.

of drawing results, loading images from disk and perform-
ing the extra Gauss-Newton iteration. In the experiment
the head performs moderate out of plane rotations and the
tracker is able to cope with them. In Fig. 2 are shown the re-
sults of the test. The estimated position of the three regions
is overlayed over the current image and on its right side are
shown the rectified image (top) and the reconstructed image
(bottom).

Figure 2. Projective appearance based track-
ing. Results for a 643 image sequence.

In the third experiment we test the performance of the
tracker for an ideal situation in which the appearance model
is the optimum for a given dimension, i.e. we track the
same image sequence used for training the appearance sub-
space. We use a modular appearance model for the mouth
and both eyes, a projective motion model and make two
Gauss-Newton iterations per frame in the optimization pro-
cedure. As shown in Fig. 3, tracking performs quite well in
terms of motion parameters and, as the illumination is the
same for training and tracking, the appearance is estimated
correctly in all frames. In this test the tracker is able to
work at 18 f.p.s with the projective model, 26 f.p.s with the
affine model and 34 f.p.s with the rotation-translation-scale

motion model 3.

Figure 3. Projective modular appearance
based tracking. Results for a 798 image se-
quence. This sequence was also used for
training the subspace appearance model.

In the last experiment we test the performance of the
tracker for a more challenging sequence. We acquired a
very long sequence in order to use half of the sequence
for training the appearance subspace and the other half for
tracking. We use a modular appearance model for the mouth
(35 by 23 pixels) and both eyes (33 by 35 pixels images
each), a rotation-translation-scale motion model and make
four Gauss-Newton iterations per frame in the optimization
procedure. As shown in Fig. 4, tracking performs quite well
in terms of motion parameters and the appearance is esti-
mated correctly in all frames. In this test the tracker is able
to work at 13 f.p.s with the rotation-translation-scale motion
model 4.

5 Discussion

In this paper we are dealing with the problem of incre-
mental image alignment for tracking. A traditional solu-

3Frame rates for this experiment include the time needed for image
decoding and showing results.

4Frame rates for this experiment include the time needed for image
decoding and showing results.
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tion is the well known Lucas and Kanade algorithm [18].
It is based on minimizing the first order approximation to
the difference between the template and the rectified images
This approach is quite demanding in terms of computational
resources as the Jacobian matrix,

M =
∂I(f(x̄, µ̄), t + δt)

∂µ̄

∣
∣
∣
∣
µ̄=µ̄t

,

has to be recomputed on each frame in the sequence. The
output of the algorithm are the increment of motion param-
eters, δµ̄, such that µ̄t+δt = µ̄t + δµ̄. This is an addi-
tive approach in contrast to a compositional one in which
f(x̄, µ̄t+δt) = f(f(x̄, δµ̄c), µ̄t) [2].

The work of Hager and Belhumeur[12] reduce the online
computational cost by computing a factorization the Jaco-
bian matrix, M, into M0(x̄)Σ(µ̄). This reduces the online
cost of the algorithm to the computation of the inverse of Σ
(see [12] for details). On the other hand, the inverse com-
positional approach of Baker and Matthews[2] achieves the
same goal of reducing the online computation by changing
the role of the template and rectified images. The Jacobian
of the template image with respect to the motion parameters
is pre-computed and the online computation is also small
(see [2] for details).

The Jacobian factorization idea, although first intro-
duced in the context of rigid tracking by Hager and
Belhumeur[12], has been reused by us in a new develop-
ment in the context of appearance-based tracking. Our ap-
proach consists of a linear appearance and a motion model,
like in Black and Jepson’s eigentracking [5]. It differs from
Active Appearance Models [1] in that we have no shape
model. The main difference between the original eigen-
tracking [5] and our approach is that in the former efficiency
issues were not considered (e.g. image gradients have to be
recomputed for each frame and for each level in the pyra-
mid).

Currently there are two ways of efficiently performing
incremental image alignment, the Jacobian factorization
and the inverse compositional approach. The main contri-
bution of this paper is extending the Jacobian factorization
approach to deal with appearance changes. Another contri-
bution we have made, is the use of the Jacobian factorization
for tracking with a projective motion model. This was not
solved in [12] and recently it has been claimed that it could
not be solved with such approach [1, 2].

6 Conclusions

Efficiency is the key for appearance based methods to
be useful in tracking applications. In this paper we have
presented an efficient procedure for tracking using a linear
subspace model of target appearance. Efficiency is gained

by precomputing the set of motion templates which arise in
a factorization of the image Jacobian used in the minimiza-
tion of the tracking error function. We have also shown how
to make this factorization for some usual motion models:
rotation, translation and scale, affine and projective.

In the experiments conducted we have shown that stan-
dard video rate performance can be easily achieved for
tracking a human face or any other image patch with mod-
erate size and low frequency texture.

There are still some important open issues on which we
are currently working, namely, how to efficiently deal with
illumination changes and target occlusions.
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