
Head-pose estimation in-the-wild using a
Random Forest
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Abstract. Human head-pose estimation has attracted a lot of interest
because it is the first step of most face analysis tasks. However, many of
the existing approaches address this problem in laboratory conditions.
In this paper, we present a real-time algorithm that estimates the head-
pose from unrestricted 2D gray-scale images. We propose a classification
scheme, based on a Random Forest, where patches extracted randomly
from the image cast votes for the corresponding discrete head-pose angle.
In the experiments, the algorithm performs similar and better than the
state-of-the-art in controlled and in-the-wild databases respectively.
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1 Introduction

Head-pose estimation is an essential preprocessing step for accurately inferring
many facial attributes, such as age, gender, race, identity or facial expression.
Additionally, head-pose is also used in other contexts, such as identifying social
interactions [9, 14], focus of attention [1, 17], or gaze estimation [19].

By estimating the head-pose, we mean predicting the relative orientation
between the viewer and the target head. It is usually parametrized by the head’s
yaw, pitch and roll angles [15]. Yaw and pitch rotations are the most informative
for interpersonal communication and cause the largest appearance changes in the
expressive parts of the face. For this reason, most approaches only estimate one of
them or both. In this paper, we consider the problem of inferring the discretized
yaw angle from a face image.

Facial pose estimation methods may be broadly organized into four groups.
Subspace approaches assume that facial appearance changes, originated by pose
variations, lie on a low-dimensional manifold embedded in a high-dimensional
feature space [2, 3, 18]. Approaches based on flexible models fit a face deformable
model and estimate pose from the location of a set of landmarks [21]. Methods
based on classification discretize the range of poses in a group of classes and solve
the problem using a classification algorithm [20]. Regression approaches estimate
a continuous function that maps facial features to the space of poses [12, 13, 10,
16, 8].
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Depending on the input data, methods may also be grouped into those using
2D images [2, 3, 18, 21, 20, 12, 13, 10, 16] or 3D range data [8]. Range data images
provide direct shape information which facilitates head-pose estimation. On the
other hand, RGB or gray-scale 2D images are more ubiquitous, but make pose
estimation harder because of the lack of texture in some facial regions.

Traditionally, pose estimation algorithms have been evaluated in laboratory
conditions, using databases such as Pointing-04 or CMU Multi-PIE [11, 16, 12,
13, 10]. Nowadays, the interest has shifted towards evaluations involving more
realistic and challenging situations using databases such as AFLW or AFW with
images acquired “in-the-wild” [21, 18].

In this paper, we present a classification approach to estimate head-pose in-
the-wild, based from 2D images, on a regression forest. Our algorithm obtains
discrete orientation data from the predictions of a Random Forest. It achieves
results close to the state-of-the-art in laboratory conditions evaluated using the
Pointing-04 database, and better than Zhu et al. [21] and Sundararajan et al. [18]
on the challenging AFLW and AFW databases. Additionally, it performs in real-
time at 80 FPS.

2 Head-pose classification based on a Random Forest

We propose Random Forest in order to obtain a discrete head-pose estimation.
The Random Forest is a well-known machine learning algorithm formed by an
ensemble of T decision trees, whose prediction is determined by combining the
outputs from all the trees. This technique has been successfully used in a variety
of computer vision problems, such as classification, regression and probability
density estimation [5]. Moreover, it is a widely used machine learning algorithm
because it may be trained with a moderately low amount of information and the
resultant ensemble can perform in real-time.

2.1 Patch-based channel features

We use visual features as Dantone et al. [6]:

– From each training image, we randomly choose a set of square patches,
Pi = {(Ii, hi)}, where hi is the pose and Ii is the appearance of the patch,
described by a set of channels Ii = (I1, . . . , Ik) [7]. Iα are the values of
channel α in image I. The channels are gray-scale values, Sobel borders and
35 Gabor filters, some of which are shown in Fig. 1.

– Our features are the difference between the average values in two rectangles,
R1 and R2, in a channel. We describe each of them with the pair of rectangle
coordinates within the patch boundaries in channel α, θ = (R1, R2, α). So,
given patch p and parameters θ, the feature value is:

f(p, θ) =
1

|R1|
∑
q∈R1

Iα(q)− 1

|R2|
∑
q∈R2

Iα(q), (1)

where q ∈ R2 are pixel coordinates.
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The splitting nodes (weak learners) of the decision trees in the Random Forest
use these features to select the best channels and face subregions to regress the
head-pose. Since we address the problem of head-pose in-the-wild, this kind of
local feature will be more robust than an holistic approach.

Fig. 1: Sample channels used in our approach.

2.2 Training regression forest

Following the standard Random Forest approach [4], we train each decision tree
using a randomly selected set of patches from a random subset of the training
faces. We optimize each weak learner by selecting the θ = (R1, R2, α), from a
random pool of candidates φ = (θ, τ), that maximizes the information gain

IG(φ) = H(P)−
∑

S∈{L,R}

|PS(φ)|
|P|

H(PS(φ)), (2)

where τ details the threshold over the feature value, PL(φ) = {P|f(P, θ) < τ},
PR(φ) = P \PL(φ), and H(PS(φ)) is the class uncertainty measure. In our case,
H(P) = log(σ

√
2πe) is the Gaussian differential entropy of the continuous patch

labels.

2.3 Pose estimation

Once we have trained the Random Forest for image patches, and given an input
image I, we estimate the head-pose orientation as follows:

1. Detect face bounding box in I.
2. Resize bounding box to W ×H pixels, denoted Ir.
3. Compute α channels from Ir.
4. Extract from Ir patches of size N ×N with a stride of S pixels, denoted P,

the set of input patches.
5. For each patch pi ∈ P:



4

5.1. For each tree tj in the Forest (see Fig. 2):
5.1.1. Input pi to tj .
5.1.2. The leaf node of tj reached by pi provides a discrete distribution of

the face orientation, p(yaw|pi, tj).
5.2. Compute the patch face pose distribution, p(yaw|pi) =

∑
j p(yaw|pi, tj).

6. Compute the final face pose distribution, p(yaw|Ir) =
∑
i p(yaw|pi).

7. The final classification is the most probable discrete orientation in p(yaw|Ir)
(see Fig. 3).

Fig. 2: Random Forest classification of an individual image patch. The result is
a discrete probability distribution of the yaw angle.

3 Experiments

In this section, we compare different state-of-the-art approaches with our method
on both controlled and in-the-wild databases.

3.1 Databases

To evaluate and train our algorithm we need a set of images labelled with ground
truth head-pose data. The accurate estimation of this data is not easy. For this
reason most public face databases do not provide it. We have chosen Pointing-04
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Fig. 3: Estimation of head-pose orientation using different face image patches.

to compare our approach with the traditional algorithms evaluated in laboratory
conditions. Another popular database of this type is Multi-PIE, that we do not
use because it shows saturated results. We also employ AFLW and AFW. These
databases were acquired for face detection in an unrestricted setting. Their faces
present extreme poses, partial occlusions, etc.

– Pointing-04. Included as a part of the Pointing 2004 Workshop on Visual
Observation of Deictic Gestures to allow an uniform evaluation of head-pose
estimation. The database contains 2790 images of 15 subjects captured in
a controlled scenario spanning discrete yaw and pitch poses from -90◦ to
90◦ with 15◦ interval. It provides a coarse ground truth obtained by asking
subjects to direct their heads toward a set of markers placed around them
in a room.

– AFLW. Provides an extensive collection of 25993 in-the-wild faces, with 21
facial landmarks annotated depending on their visibility. To the best of our
knowledge, this is the largest public database providing face pose labels in an
uncontrolled scenario. AFLW uses manually annotated landmarks positions
to approximate face bounding box and coarse yaw, pitch and roll angles by
fitting a mean 3D face using the POSIT algorithm.

– AFW. Consist of 250 images with 468 challenging in-the-wild faces. It is
commonly used as a test set because of the low number of images. It provides
large variations in scales and discrete poses annotated for angular yaw from
-90◦ to 90◦ with 15◦ interval plus facial bounding box.
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3.2 Evaluation

As in related work, we employ the mean absolute error (MAE) metric in order to
evaluate and compare the algorithms. In addition, we also display results using
a cumulative error distribution, representing the percentage of test faces with
absolute error lower than some degrees of tolerance. Finally, since our approach
provides discrete classification results, we also show the confusion matrix. In our
implementation we discretize angular yaw in steps of 15◦ {-90◦, -75◦, -60◦, -45◦,
-30◦, -15◦, 0◦, +15◦, +30◦, +45◦, +60◦, +75◦, +90◦}, which let us to compare
our results with other state-of-the-art approaches.

We follow a 90%/10% hold-out evaluation scheme to deduce the performance
on Pointing-04 and AFLW databases. Given the small size of AFW, we only use
it for testing. In this case we train the algorithm with a balanced data set from
AFLW with 700 images per class.

3.3 Configuration of Random Forest parameters

We use the same configuration of parameters for our algorithm in all experiments.
We resize the face bounding box provided by each database to 105× 125 pixels
and assume the head to be the prominent object in the rectangle. The forest has
T = 20 trees each of them trained from a randomly selected set of images equally
distributed by yaw angle (9100 for AFLW and 2457 for Pointing-04). From each
bounding box we randomly extract 20 patches of 61×61 pixels. The performance
of the algorithm is quite sensitive to this parameter. A smaller patch would not
capture enough information to predict the poses. On the other hand, a larger
patch would provide an implementation more sensitive to occlusions.

Tree growing stops when the depth reaches 15, or if there are less than 20
patches in a leaf. We train each tree node by selecting the best parameters from
a pool of φ = 50000 samples obtained from θ = 2000 different combinations of
[α, R1, R2] and τ = 25 thresholds. The maximum random size of the subpatches
defining the asymmetric areas R1 and R2 is set to be lower than a 75% of the
patch size.

For efficiency and accuracy reasons, we also filter out leaves with a maximum
variance threshold set to 400. This limits the impact in the final prediction of
non-informative leaves. A pair of crucial test-time parameters are the number
of trees in the forest and the stride controlling the sampling of patches. We
process only 1 out of 10 possible patches. Test values can be empirically tuned
to find the desired trade-off between accuracy and temporal efficiency of the
estimation process, making the algorithm adaptive to the constraints of different
applications.

In Fig. 4 we show a set of sample results. Green and blue lines represent the
estimated angular yaw and the ground truth respectively.

3.4 Results

In the first experiment, we evaluate the performance of the proposed algorithm in
Pointing-04, a database acquired in laboratory conditions. The results in Table 1
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Fig. 4: Sample results for Pointing-04 (top), AFLW (middle) and AFW (bottom)
databases. Green and blue lines indicate respectively pose estimation and ground
truth yaw angle.

show that our proposal has a MAE close to the state-of-the-art in this database.
Also, our classification accuracy, i.e. specific discrete head-pose angle properly
labelled with the correct class, is behind the best. Nevertheless, in a 93.54% of
the cases the error in our approach is lower than 15◦. All three approaches with
better results use holistic HOG-based face features [12, 13, 10]. In this constrained
context, this global feature is slightly more informative for estimating face pose
than the set of local patches that we use in our approach. However, as we show in
the sequel, local representations will have better performance in unconstrained
situations.

Method
Pointing-04

MAE Accuracy (0◦)

Stiefelhagen [16] 9.5◦ 52.0%
Haj [12] 6.56◦ 67.36%
Hara [13] 5.29◦ -
Geng [10] 4.24◦ 73.30%
Our method 7.84◦ 55.19%

Table 1: Head-pose estimation results in a constrained database.

In the second experiment, we consider the unconstrained situations appearing
in real-world situations. In Table 2 we present the results for AFLW and AFW
databases. Here our approach achieves the best performance, both in terms of
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MAE and classification accuracy with an error less than 15◦. These results proves
the powerful representational ability of local features with a nonlinear regression
algorithm. This approach can deal with challenging in-the-wild conditions, such
as the presence of occlusions, illumination changes or facial expressions.

Our algorithm also outperforms its competitors in terms of computational
requirements. It submits a frame rate of 80 FPS (12 ms per image) on an Intel
Core i7 CPU processor at 3.60GHz with 8 cores multi-threaded, 300 times faster
than the second best approach, Zhu et al. [21]. Sundararajan et al. [18] provides
similar runtime performance, but with a clearly worse head-pose accuracy.

Method
AFLW AFW

MAE Accuracy (≤15◦) MAE Accuracy (≤15◦)

Haj [12] - - - 78.7%
Zhu [21] - - - 81.0%
Sundararajan [18] 17.48◦ 58.05% 17.20◦ 58.33%
Our method 12.26◦ 72.57% 12.50◦ 83.54%

Table 2: Head-pose estimation results for in-the-wild databases.

Finally, in Fig. 5 and Fig. 6 we compare the cumulative head-pose error of
our approach against Sundararajan et al. [18]. We also present the confusion
matrix of the yaw classification label. The colour intensity in it represent the
percentage of success for each class (see bar on the right side). As can be seen,
most incorrect predictions are adjacent to the proper ground truth angle. The
largest errors are between ±90◦ and ±45◦ classes. This is reasonable, given the
lower appearance variation between them.

Fig. 5: Cumulative head-pose error distribution and confusion matrix for AFLW.
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Fig. 6: Cumulative head-pose error distribution and confusion matrix for AFW.

We developed our own open-source code of the previously described Random
Forest classifier algorithm. All implementations could be made publicly available
after submission.

4 Conclusions

In this paper, we have presented an algorithm to estimate head-pose yaw angle
in unrestricted situations. To this end, we learn a regression forest from random
face patches. We obtain the optimal splitting in each tree node according to
the entropy computed from continuous yaw angle. The experimental evaluation
shows that our algorithm performs best in the tests on unrestricted databases,
proving the superior robustness of this local representation with the presence of
occlusions, illumination changes, motion blur and exaggerated facial expressions.
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